You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
344 lines
11 KiB
344 lines
11 KiB
''' Controlling an Arduino with a time table ''' |
|
|
|
import asyncio |
|
import serial |
|
import serial.tools.list_ports |
|
|
|
from collections import namedtuple |
|
from datetime import datetime, timedelta |
|
from openpyxl import load_workbook |
|
|
|
# example time table for the TrapControl |
|
example = ''' |
|
00:00.0 close |
|
00:06.0 open |
|
00:08.0 close |
|
00:10.0 open |
|
00:12.0 close |
|
00:14.0 open |
|
00:16.0 close |
|
00:18.0 open |
|
00:20.0 close |
|
00:22.0 open |
|
''' |
|
|
|
|
|
# datetime formats for timetable parsing |
|
TIMETABLE_FORMATS = ['%M:%S', '%M:%S.%f', '%H:%M:%S', '%H:%M:%S.%f'] |
|
|
|
|
|
# named tuple for a single scheduled command |
|
ScheduledCommand = namedtuple('ScheduledCommand', 'delta command cmd') |
|
|
|
|
|
def parse_time_table(timetable, available_commands=None): |
|
''' parses a (text) time table into a list of ScheduledCommands |
|
|
|
timetable: |
|
a textual representaion of time and commands like |
|
|
|
00:12.0 close |
|
00:14.0 open |
|
00:16.0 close |
|
00:18.0 open |
|
|
|
available_commands: |
|
a dictionary containing the available human readable commands as |
|
keys and the commands to send as values |
|
|
|
{'open': 0, 'close': 1} |
|
|
|
if None is provided, the check is skipped and the first lower case |
|
letter used |
|
|
|
returns a list consisting of ScheduledCommands |
|
''' |
|
# split the time table text by line break |
|
raw_lines = timetable.split('\n') |
|
# remove surrounding white space |
|
content_lines = (line.strip() for line in raw_lines) |
|
# remove empty lines |
|
lines = (line for line in content_lines if line) |
|
|
|
timed_commands =[] |
|
for line in lines: |
|
# split the lines into time and command |
|
try: |
|
raw_time, raw_command = line.split(None, 1) |
|
except ValueError: |
|
msg = "error in line '{}'".format(line) |
|
raise ValueError(msg) |
|
# parse time and commands |
|
delta = parse_time(raw_time) |
|
cmd = parse_command(raw_command, available_commands) |
|
# add a ScheduledCommand to the resulting list |
|
tc = ScheduledCommand(delta, raw_command, cmd) |
|
timed_commands.append(tc) |
|
return timed_commands |
|
|
|
|
|
def parse_excel_file(path, available_commands=None): |
|
''' parses an time table in an excel file into a list of ScheduledCommands |
|
|
|
path: |
|
path to excel file |
|
the time must be in the first column of the first sheet, the command in |
|
the second column |
|
|
|
available_commands: |
|
a dictionary containing the available human readable commands as |
|
keys and the commands to send as values |
|
|
|
{'open': 0, 'close': 1} |
|
|
|
if None is provided, the check is skipped and the first lower case |
|
letter used |
|
|
|
returns a list consisting of ScheduledCommands |
|
''' |
|
workbook = load_workbook(path, read_only=True) |
|
sheets = workbook.get_sheet_names() |
|
sheet_name = sheets[0] |
|
sheet = workbook[sheet_name] |
|
|
|
is_header = True |
|
timed_commands = [] |
|
for i, row in enumerate(sheet.rows): |
|
delta = parse_time_cell(row[0]) |
|
if delta is None: |
|
# no time in the cell |
|
if is_header: |
|
# this is still a header |
|
continue |
|
else: |
|
# not the header and not a time cell |
|
# premature end of list |
|
break |
|
else: |
|
# a time in the cell, this is not a header any more |
|
is_header = False |
|
raw_command = row[1].value |
|
cmd = parse_command(raw_command, available_commands) |
|
# add a ScheduledCommand to the resulting list |
|
tc = ScheduledCommand(delta, raw_command, cmd) |
|
timed_commands.append(tc) |
|
return timed_commands |
|
|
|
|
|
def parse_time_cell(excel_cell): |
|
''' parse an excel cell that contains a time value |
|
|
|
if no time value is found in the excel cell None will be returned |
|
''' |
|
if excel_cell.is_date: |
|
# the excel value is a datetime object |
|
return time_as_timedelta(excel_cell.value) |
|
if isinstance(excel_cell.value, float): |
|
# sometimes excel stores times as a float value |
|
return timedelta(days=excel_cell.value) |
|
try: |
|
# if it is not a common date fomat, try to parse it |
|
delta = parse_time(excel_cell.value) |
|
return delta |
|
except ValueError: |
|
return None |
|
|
|
|
|
def parse_time(time_str): |
|
''' parses a string to extract the time information |
|
|
|
time_str: |
|
string representaion of a time like '00:03.0' |
|
|
|
returns a timedelta object, e.g. timedelta(seconds=3) |
|
''' |
|
# try the available time formats |
|
time_str = str(time_str) |
|
for format_str in TIMETABLE_FORMATS: |
|
try: |
|
time_obj = datetime.strptime(time_str, format_str) |
|
break |
|
except ValueError: |
|
pass |
|
else: |
|
msg = "time data '{}' does not match any format".format(time_str) |
|
raise ValueError(msg) |
|
return time_as_timedelta(time_obj) |
|
|
|
|
|
def time_as_timedelta(time_object): |
|
''' converts a time object to a timedelta ''' |
|
return timedelta( |
|
hours=time_object.hour, |
|
minutes=time_object.minute, |
|
seconds=time_object.second, |
|
microseconds=time_object.microsecond |
|
) |
|
|
|
def parse_command(command, available_commands=None): |
|
''' parses a string and checks if it is a valid command |
|
|
|
raw_command: |
|
human readable representation of the command |
|
|
|
available_commands: |
|
a dictionary containing the available human readable commands as |
|
keys and the commands to send as values |
|
|
|
{'open': 0, 'close': 1} |
|
|
|
if None is provided, the check is skipped and the first lower case |
|
letter used |
|
|
|
returns the command to send over serial |
|
''' |
|
if available_commands is None: |
|
cmd = str(command)[0] |
|
else: |
|
try: |
|
cmd = available_commands[command.lower()] |
|
except KeyError: |
|
msg = "unknown command '{}'".format(command) |
|
raise ValueError(msg) |
|
if isinstance(cmd, str): |
|
cmd = cmd.encode('utf-8') |
|
return cmd |
|
|
|
|
|
def find_arduino_port(): |
|
''' returns the port where an arduino is connected ''' |
|
# some regular expressions matching arduino and genuino |
|
tmp = serial.tools.list_ports.grep('.+uino.+') |
|
port_list = list(tmp) |
|
# rais an error, if no or more than one arduinos are found |
|
if len(port_list) == 0: |
|
raise IOError('no arduino port found') |
|
elif len(port_list) > 1: |
|
raise IOError('{} arduino ports found'.format(len(port_list))) |
|
# return only the device name |
|
port_info = port_list[0] |
|
return port_info.device |
|
|
|
|
|
def send_command(scheduled_command, serial_connection): |
|
''' sends a command over a serial connection ''' |
|
serial_connection.write(scheduled_command.cmd) |
|
print(str(scheduled_command.delta), scheduled_command.command) |
|
|
|
|
|
def run(scheduled_commands, serial_connection): |
|
''' run scheduled commands |
|
|
|
scheduled_commands: |
|
list of ScheduledCommands |
|
|
|
serial_connection: |
|
serial connection object to send commands |
|
''' |
|
# use a new event loop every time |
|
# if only one eventloop is used, the interactive use of run() |
|
# does not work since the loop is closed in the end |
|
loop = asyncio.new_event_loop() |
|
for scheduled_command in scheduled_commands: |
|
loop.call_later( |
|
scheduled_command.delta.total_seconds(), |
|
send_command, |
|
scheduled_command, |
|
serial_connection |
|
) |
|
# loop should stop one second after last command in list |
|
timed_loop_stop = scheduled_command.delta + timedelta(seconds=1) |
|
loop.call_later(timed_loop_stop.total_seconds(), loop.stop) |
|
try: |
|
loop.run_forever() |
|
except KeyboardInterrupt: |
|
loop.stop() |
|
loop.close() |
|
|
|
|
|
class TimedCommands(object): |
|
''' lightweight encapsulation of the functions in the module ''' |
|
|
|
def __init__(self, |
|
timetable, |
|
available_commands, |
|
port=None, |
|
baudrate=9600, |
|
**serial_kwargs): |
|
''' parses a time table and establishes a serial connection |
|
|
|
timetable: |
|
a file path to an excel file or |
|
a textual representaion of time and commands like |
|
|
|
00:12.0 close |
|
00:14.0 open |
|
00:16.0 close |
|
00:18.0 open |
|
|
|
available_commands: |
|
a dictionary containing the available human readable commands |
|
as keys and the commands to send as values. |
|
If an other iterable with strings is provided, the lowercase |
|
version of the strings will be used as human readable commands |
|
and the first letter of the strings as commands to send over the |
|
wire. |
|
|
|
port [None] |
|
port where the Arduino is connected |
|
if port is None, the ports are scanned for an Arduino |
|
|
|
baudrate [9600] |
|
speed of the serial connection |
|
|
|
serial_kwargs |
|
dictionary with further arguments for the serial connection |
|
''' |
|
# make sure the available commands are a dictionary |
|
cmd_dict = self._ensure_command_dict(available_commands) |
|
# parse the time table into something suitable |
|
if '.xls' in timetable: |
|
self.commands = parse_excel_file(timetable, cmd_dict) |
|
else: |
|
self.commands = parse_time_table(timetable, cmd_dict) |
|
|
|
# establish the serial connection |
|
port = port or find_arduino_port() |
|
self.serial = serial.Serial(port, baudrate, **serial_kwargs) |
|
|
|
|
|
def _ensure_command_dict(self, iterable): |
|
''' ensures, that the available commands are a dictionary |
|
|
|
iterable: |
|
if the itarable is a dictionary, the keys will be |
|
transformed to lowercase |
|
if it is not a dictionary, the lowercase version of the |
|
items is used as a human readable command and the first |
|
character of this command will be sent over the wire |
|
''' |
|
|
|
try: |
|
if isinstance(iterable, dict): |
|
pairs = list(iterable.items()) |
|
keys = [key.lower() for key, value in pairs] |
|
values = [value for key, value in pairs] |
|
else: |
|
tmp = (str(item) for item in iterable) |
|
keys = [item.lower() for item in tmp] |
|
values = [item[0] for item in keys] |
|
pairs = zip(keys, values) |
|
return dict(pairs) |
|
except: |
|
msg = 'available commands should be a list or dict of strings' |
|
raise TypeError(msg) |
|
|
|
|
|
def run(self): |
|
''' run the scheduled commands ''' |
|
run(self.commands, self.serial) |
|
|
|
|
|
def close(self): |
|
''' closes an open serial connection ''' |
|
self.serial.close()
|
|
|