""" Sartorius Logger Make time series measurements with a Sartorius sartoriusb. """ __version__ = "0.0.1" import pandas import sartoriusb import time import sys from collections import namedtuple from datetime import datetime from tqdm import tqdm from .datalogger import DataLogger, NullLogger from .parsers import parse_cli_arguments, parse_gui_arguments try: from gooey import Gooey except ImportError: def Gooey(*args, **kargs): msg = "The graphilcal user interface must be installed separately" raise NotImplementedError(msg) SCALE_INFO_LABELS = { sartoriusb.CMD_INFO_TYPE: "Scale Model", sartoriusb.CMD_INFO_SNR: "Scale Serial Number", sartoriusb.CMD_INFO_VERSION_SCALE: "Software Version of Scale", sartoriusb.CMD_INFO_VERSION_CONTROL_UNIT: "Software Version of Control Unit", # noqa: E501 } MEASUREMENT_KEYS = [ "nr", "time", "mode", "value", "unit", "stable", "message", ] Result = namedtuple("Result", ["info", "scale", "data", "log_file"]) def get_scale_info(conn): """ returns the available scale information """ data = {} for command, label in SCALE_INFO_LABELS.items(): raw_data_lines = conn.get(command) if raw_data_lines: raw_data = raw_data_lines[0] raw_data = raw_data.strip() parts = raw_data.split(maxsplit=1) info = parts[1] if len(parts) > 1 else "" else: # propably a timeout of the serial connection info = "" data[label] = info return data def _measure_and_log(nr, conn, logger): """ performs and logs one measurement :params nr: number of measurement :params conn: connection to the scale :params log: data logger instance :returns: dict for measurement point """ measurement = conn.measure() data_list = [nr, datetime.now()] + list(measurement) logger.add_list(data_list) data_dict = dict(zip(MEASUREMENT_KEYS, data_list)) # for the pandas data frame the value should be transformed into a float try: data_dict["value"] = float(data_dict["value"]) except (ValueError, TypeError): pass return data_dict def no_progress_bar(iterator): """" a stub function for not displaying a progress bar """ return iterator def gooey_progress_factory(settings): """" progress information, tailored to Gooey """ total = settings.measurements print( ( f"measuring every " f"{settings.interval.value}{settings.interval.unit} " f"for {settings.duration.value}{settings.duration.unit}" ) ) def gui_progress(iterator): for i in iterator: print(f"measurement {i} of {total}") yield i sys.stdout.flush() print(f"measurement {total} of {total}") sys.stdout.flush() return gui_progress def _get_log_file_path(settings): """ constructs the path to the log file """ now = datetime.now() log_file_name = now.strftime("%Y-%m-%d %H-%M-%S") + ".txt" return settings.directory / log_file_name def _log_measurement_info(logger, settings): """ logs all measurement info """ measurement_info = { "Measurements": settings.measurements, "Duration": f"{settings.duration.value}{settings.duration.unit}", "Interval": f"{settings.interval.value}{settings.interval.unit}", "Com-Port": settings.port, } logger.add_section("Measurement Settings", measurement_info.items()) return measurement_info def _log_scale_info(logger, conn): """ logs common scale info """ scale_info = get_scale_info(conn) logger.add_section("Scale Info", scale_info.items()) return scale_info def measure_series(settings, progress_bar=no_progress_bar, data_logger=None): """ serial measurements will return the data as pandas data frames in a "Result" named tuple :params settings: parser.Settings named tuple :params progress_bar: progress bar function to use :params data_logger: class of the data logger to use :returns: named tuple "Result" """ data_logger = data_logger or NullLogger() data_collection = [] with data_logger as logger: measurement_info = _log_measurement_info(logger, settings) with sartoriusb.SartoriusUsb(settings.port) as conn: scale_info = _log_scale_info(logger, conn) # add column headers headers = [item.capitalize() for item in MEASUREMENT_KEYS] logger.add_section( "Measured Data", [headers], append_empty_line=False ) for i in progress_bar(range(1, settings.measurements)): data = _measure_and_log(i, conn, logger) data_collection.append(data) time.sleep(settings.interval.seconds) data = _measure_and_log(settings.measurements, conn, logger) data_collection.append(data) data_df = pandas.DataFrame(data_collection).set_index("time") info_df = pandas.DataFrame(measurement_info.items()).set_index(0) scale_df = pandas.DataFrame(scale_info.items()).set_index(0) return Result(info_df, scale_df, data_df, data_logger.path) def export_as_excel(measurement_result): """ saves the collected data as an Excel file """ excel_path = measurement_result.log_file.with_suffix(".xlsx") with pandas.ExcelWriter(excel_path) as writer: measurement_result.data.to_excel(writer, sheet_name="Measurements") measurement_result.info.to_excel(writer, sheet_name="Settings") measurement_result.scale.to_excel(writer, sheet_name="Scale") def cli(): settings = parse_cli_arguments() log_file_path = _get_log_file_path(settings) result = measure_series( settings, progress_bar=tqdm, data_logger=DataLogger(log_file_path) ) export_as_excel(result) @Gooey( program_name="SartoriusLogger", progress_regex=r"^measurement (?P\d+) of (?P\d+)", progress_expr="current / total * 100", ) def gui(): settings = parse_gui_arguments() log_file_path = _get_log_file_path(settings) gpb = gooey_progress_factory(settings) result = measure_series( settings, progress_bar=gpb, data_logger=DataLogger(log_file_path) ) export_as_excel(result)