Create nice images from Sensospot Array scans
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

199 lines
5.4 KiB

""" Sensospot Images
Creating nice spot images from scans
"""
__version__ = "0.0.1"
import sys
4 years ago
from pathlib import Path
from datetime import datetime
4 years ago
import click
from sensospot_data import parse_file
from sensospot_data.parameters import _search_measurement_params_file
4 years ago
from .images import (
crop,
recalculate,
get_position,
annotate_image,
load_array_image,
)
from .parameters import get_spot_parameters, get_array_parameters
def calulate_pixel_size(data_frame, array_definition):
first = get_position(data_frame.iloc[0], actual=False)
last = get_position(data_frame.iloc[-1], actual=False)
x_dist_pixel = last.x - first.x
y_dist_pixel = last.y - first.y
ad = array_definition
x_dist_um = ad.dist_x * (ad.size_x - 1)
y_dist_um = ad.dist_y * (ad.size_y - 1)
if x_dist_um == 0:
# only one spot in x direction
return x_dist_um / x_dist_pixel
elif y_dist_um == 0:
# only one spot in x direction
return y_dist_um / y_dist_pixel
# more than one spot in each direction
x_pixel_size = x_dist_um / x_dist_pixel
y_pixel_size = y_dist_um / y_dist_pixel
return (x_pixel_size + y_pixel_size) / 2
def get_example_data_path(input_dir):
input_path = Path(input_dir)
tif_files = input_path.glob("*.tif")
example_tif = next(tif_files)
return example_tif.with_suffix(".csv")
4 years ago
def get_filename_prefix(input_dir):
file_path = get_example_data_path(input_dir)
example_name = file_path.stem
prefix, well, exposure = example_name.rsplit("_", 2)
return prefix
def retrieve_spot_parameters(input_dir, scale):
parameters_path = _search_measurement_params_file(input_dir)
if parameters_path is None:
sys.exit(f"Could not find parameter files in {input_dir}")
4 years ago
array_parameters = get_array_parameters(parameters_path)
spot_parameters = get_spot_parameters(parameters_path, array_parameters)
4 years ago
example_data_path = get_example_data_path(input_dir)
example_data = parse_file(example_data_path)
pixel_size = calulate_pixel_size(example_data, array_parameters)
4 years ago
return recalculate(spot_parameters, scale / pixel_size)
4 years ago
def search_image_files(input_dir, wells, exposures):
input_path = Path(input_dir)
prefix = get_filename_prefix(input_path)
tmp_pattern = f"{prefix}_*{wells}*_*{exposures}.tif"
pattern = tmp_pattern.replace("***", "*").replace("**", "*")
return input_path.glob(pattern)
4 years ago
def create_file_map(input_dir, wells, exposures):
file_map = {}
for tif_path in search_image_files(input_dir, wells, exposures):
rest, exposure = tif_path.stem.rsplit("_", 1)
csv_path = tif_path.parent / f"{rest}_1.csv"
if csv_path.is_file():
if csv_path not in file_map:
file_map[csv_path] = []
file_map[csv_path].append(tif_path)
return file_map
4 years ago
def process_image(image_file, spot_parameters, spot_data, scale):
img = load_array_image(image_file, scale=scale)
annotate_image(img, spot_parameters, spot_data, scale)
return img
4 years ago
def create_crops(
output_path, img, image_path, spot_parameters, array_data, scale
):
base_name = image_path.stem
for index, spot_data in array_data.iterrows():
cropped_img = crop(img, spot_parameters, spot_data, scale)
new_path = output_path / f"{base_name}_{index + 1:03}.tif"
cropped_img.save(new_path)
4 years ago
def process(
input_dir,
output_dir,
wells="*",
exposures="*",
scale=3,
add_single_spots=False,
):
spot_parameters = retrieve_spot_parameters(input_dir, scale)
file_map = create_file_map(input_dir, wells, exposures)
output_path = Path(output_dir)
if not output_path.is_dir():
sys.exit(f"Could not find output directory: {output_dir}")
for data_file, image_files in file_map.items():
array_data = parse_file(data_file)
print(data_file)
for image_path in image_files:
img = process_image(image_path, spot_parameters, array_data, scale)
img.save(output_path / image_path.name)
if add_single_spots:
4 years ago
create_crops(
output_path,
img,
image_path,
spot_parameters,
array_data,
scale,
)
@click.command()
@click.argument(
"source",
type=click.Path(
exists=True,
file_okay=False,
dir_okay=True,
readable=True,
writable=True,
),
)
@click.option(
"-o",
"--output",
default=None,
help="Output directory name, defaults to folder on desktop",
)
@click.option(
"-w",
"--wells",
default="*",
help="restrict to this wells, * = all",
)
@click.option(
"-e",
"--Exposures",
default="*",
help="restrict to this exposure ids, * = all",
)
@click.option(
"-s",
"--scale",
type=int,
default=3,
help="scale-up of images",
)
@click.option(
"--spots",
default=False,
is_flag=True,
help="include cropped images of spots",
)
def run(source, output=None, wells="*", exposures="*", scale=3, spots=False):
if output is None or not Path(output).is_dir():
default = Path.home() / "Desktop"
if not default.is_dir():
default = Path.home()
now = datetime.now().strftime("%Y-%m-%d %H-%M-%S")
output = default / now
output.mkdir(exist_ok=True)
process(source, output, wells, exposures, scale, spots)