You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
6.7 KiB
227 lines
6.7 KiB
4 years ago
|
import numpy
|
||
|
import pandas
|
||
|
import pytest
|
||
|
|
||
|
|
||
|
def test_check_if_xdr_ready_ok(exposure_df):
|
||
|
from sensospot_data.columns import (
|
||
|
SETTINGS_EXPOSURE_TIME,
|
||
|
SETTINGS_EXPOSURE_CHANNEL,
|
||
|
)
|
||
|
from sensospot_data.dynamic_range import _check_if_xdr_ready
|
||
|
|
||
|
exposure_df[SETTINGS_EXPOSURE_TIME] = 1
|
||
|
exposure_df[SETTINGS_EXPOSURE_CHANNEL] = 2
|
||
|
|
||
|
result = _check_if_xdr_ready(exposure_df)
|
||
|
|
||
|
assert result is None
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(["run"], [[0], [1], [2]])
|
||
|
def test_check_if_xdr_ready_raises_error_missing_column(exposure_df, run):
|
||
|
from sensospot_data.columns import (
|
||
|
SETTINGS_EXPOSURE_TIME,
|
||
|
SETTINGS_EXPOSURE_CHANNEL,
|
||
|
)
|
||
|
from sensospot_data.dynamic_range import _check_if_xdr_ready
|
||
|
|
||
|
columns = [SETTINGS_EXPOSURE_TIME, SETTINGS_EXPOSURE_CHANNEL, "X"]
|
||
|
extra_col = columns[run]
|
||
|
|
||
|
exposure_df[extra_col] = 1
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
_check_if_xdr_ready(exposure_df)
|
||
|
|
||
|
|
||
|
def test_check_if_xdr_ready_raises_error_mixed_channels(exposure_df):
|
||
|
from sensospot_data.columns import (
|
||
|
META_DATA_EXPOSURE_ID,
|
||
|
SETTINGS_EXPOSURE_TIME,
|
||
|
SETTINGS_EXPOSURE_CHANNEL,
|
||
|
)
|
||
|
from sensospot_data.dynamic_range import _check_if_xdr_ready
|
||
|
|
||
|
exposure_df[SETTINGS_EXPOSURE_TIME] = 1
|
||
|
exposure_df[SETTINGS_EXPOSURE_CHANNEL] = exposure_df[META_DATA_EXPOSURE_ID]
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
_check_if_xdr_ready(exposure_df)
|
||
|
|
||
|
|
||
|
def test_check_if_xdr_ready_raises_error_non_numeric_time(exposure_df):
|
||
|
from sensospot_data.columns import (
|
||
|
SETTINGS_EXPOSURE_TIME,
|
||
|
SETTINGS_EXPOSURE_CHANNEL,
|
||
|
)
|
||
|
from sensospot_data.dynamic_range import _check_if_xdr_ready
|
||
|
|
||
|
exposure_df[SETTINGS_EXPOSURE_TIME] = "X"
|
||
|
exposure_df[SETTINGS_EXPOSURE_CHANNEL] = 2
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
_check_if_xdr_ready(exposure_df)
|
||
|
|
||
|
|
||
|
def test_check_if_xdr_ready_raises_error_on_nan(exposure_df):
|
||
|
from sensospot_data.columns import (
|
||
|
SETTINGS_EXPOSURE_TIME,
|
||
|
SETTINGS_EXPOSURE_CHANNEL,
|
||
|
)
|
||
|
from sensospot_data.dynamic_range import _check_if_xdr_ready
|
||
|
|
||
|
exposure_df[SETTINGS_EXPOSURE_TIME] = numpy.nan
|
||
|
exposure_df[SETTINGS_EXPOSURE_CHANNEL] = 2
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
_check_if_xdr_ready(exposure_df)
|
||
|
|
||
|
|
||
|
def test_check_overflow_limit_defaults():
|
||
|
from sensospot_data.columns import CALC_SPOT_OVERFLOW, RAW_DATA_SPOT_MEAN
|
||
|
from sensospot_data.dynamic_range import _calc_overflow_info
|
||
|
|
||
|
data_frame = pandas.DataFrame(data={RAW_DATA_SPOT_MEAN: [0.1, 0.5, 0.6]})
|
||
|
|
||
|
result = _calc_overflow_info(data_frame)
|
||
|
|
||
|
assert list(result[CALC_SPOT_OVERFLOW]) == [False, False, True]
|
||
|
|
||
|
|
||
|
def test_check_overflow_limit_custom_limit():
|
||
|
from sensospot_data.columns import CALC_SPOT_OVERFLOW
|
||
|
from sensospot_data.dynamic_range import _calc_overflow_info
|
||
|
|
||
|
data_frame = pandas.DataFrame(data={"X": [4, 2, 3, 4]})
|
||
|
|
||
|
result = _calc_overflow_info(data_frame, "X", 2)
|
||
|
|
||
|
assert list(result[CALC_SPOT_OVERFLOW]) == [True, False, True, True]
|
||
|
|
||
|
|
||
|
def test_reduce_overflow_multiple_times(normalization_data_frame):
|
||
|
from sensospot_data.dynamic_range import (
|
||
|
PROBE_MULTI_INDEX,
|
||
|
_reduce_overflow,
|
||
|
_calc_overflow_info,
|
||
|
)
|
||
|
|
||
|
data_frame = _calc_overflow_info(normalization_data_frame, "Saturation", 1)
|
||
|
result = _reduce_overflow(data_frame)
|
||
|
|
||
|
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX)
|
||
|
|
||
|
assert list(sorted_results["Value"]) == [
|
||
|
1,
|
||
|
2,
|
||
|
3,
|
||
|
1,
|
||
|
10,
|
||
|
10,
|
||
|
10,
|
||
|
10,
|
||
|
100,
|
||
|
100,
|
||
|
100,
|
||
|
100,
|
||
|
]
|
||
|
|
||
|
|
||
|
def test_reduce_overflow_only_one_exposure_time(normalization_data_frame):
|
||
|
from sensospot_data.dynamic_range import (
|
||
|
SETTINGS_EXPOSURE_TIME,
|
||
|
_reduce_overflow,
|
||
|
_calc_overflow_info,
|
||
|
)
|
||
|
|
||
|
normalization_data_frame[SETTINGS_EXPOSURE_TIME] = 1
|
||
|
|
||
|
data_frame = _calc_overflow_info(normalization_data_frame, "Saturation", 1)
|
||
|
result = _reduce_overflow(data_frame)
|
||
|
|
||
|
assert list(result["Value"]) == list(normalization_data_frame["Value"])
|
||
|
|
||
|
|
||
|
def test_blend(normalization_data_frame):
|
||
|
from sensospot_data.dynamic_range import PROBE_MULTI_INDEX, blend
|
||
|
|
||
|
result = blend(normalization_data_frame, "Saturation", 1)
|
||
|
|
||
|
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX)
|
||
|
|
||
|
assert list(sorted_results["Value"]) == [
|
||
|
1,
|
||
|
2,
|
||
|
3,
|
||
|
1,
|
||
|
10,
|
||
|
10,
|
||
|
10,
|
||
|
10,
|
||
|
100,
|
||
|
100,
|
||
|
100,
|
||
|
100,
|
||
|
]
|
||
|
|
||
|
|
||
|
def test_blend_raises_error(normalization_data_frame):
|
||
|
from sensospot_data.dynamic_range import SETTINGS_EXPOSURE_TIME, blend
|
||
|
|
||
|
normalization_data_frame[SETTINGS_EXPOSURE_TIME] = "A"
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
blend(normalization_data_frame, "Saturation", 1)
|
||
|
|
||
|
|
||
|
def test_normalize_values_no_param(normalization_data_frame):
|
||
|
from sensospot_data.columns import RAW_DATA_NORMALIZATION_MAP
|
||
|
from sensospot_data.dynamic_range import (
|
||
|
PROBE_MULTI_INDEX,
|
||
|
blend,
|
||
|
normalize_values,
|
||
|
)
|
||
|
|
||
|
reduced = blend(normalization_data_frame, "Saturation", 1)
|
||
|
|
||
|
result = normalize_values(reduced)
|
||
|
|
||
|
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX)
|
||
|
expected_values = [1, 4, 15, 1, 10, 10, 10, 10, 100, 100, 100, 100]
|
||
|
|
||
|
for normalized_col in RAW_DATA_NORMALIZATION_MAP.values():
|
||
|
assert list(sorted_results[normalized_col]) == expected_values
|
||
|
|
||
|
|
||
|
def test_normalize_values_custom_param(normalization_data_frame):
|
||
|
from sensospot_data.columns import RAW_DATA_NORMALIZATION_MAP
|
||
|
from sensospot_data.dynamic_range import (
|
||
|
PROBE_MULTI_INDEX,
|
||
|
blend,
|
||
|
normalize_values,
|
||
|
)
|
||
|
|
||
|
reduced = blend(normalization_data_frame, "Saturation", 1)
|
||
|
|
||
|
result = normalize_values(reduced, 100)
|
||
|
|
||
|
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX)
|
||
|
expected_values = [2, 8, 30, 2, 20, 20, 20, 20, 200, 200, 200, 200]
|
||
|
|
||
|
for normalized_col in RAW_DATA_NORMALIZATION_MAP.values():
|
||
|
assert list(sorted_results[normalized_col]) == expected_values
|
||
|
|
||
|
|
||
|
def test_create_xdr(normalization_data_frame):
|
||
|
from sensospot_data.columns import RAW_DATA_NORMALIZATION_MAP
|
||
|
from sensospot_data.dynamic_range import PROBE_MULTI_INDEX, create_xdr
|
||
|
|
||
|
result = create_xdr(normalization_data_frame, 100, "Saturation", 1)
|
||
|
|
||
|
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX)
|
||
|
expected_values = [2, 8, 30, 2, 20, 20, 20, 20, 200, 200, 200, 200]
|
||
|
|
||
|
for normalized_col in RAW_DATA_NORMALIZATION_MAP.values():
|
||
|
assert list(sorted_results[normalized_col]) == expected_values
|