|
|
|
""" Sensospot Data Parser
|
|
|
|
|
|
|
|
Parsing the numerical output from Sensovations Sensospot image analysis.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import re
|
|
|
|
from pathlib import Path
|
|
|
|
from collections import namedtuple
|
|
|
|
|
|
|
|
import pandas
|
|
|
|
|
|
|
|
REGEX_WELL = re.compile(
|
|
|
|
r"""
|
|
|
|
(?P<row>([A-Z]+)) # row name containing one or more letters
|
|
|
|
(?P<column>(\d+)) # column, one or more decimals
|
|
|
|
""",
|
|
|
|
re.VERBOSE | re.IGNORECASE,
|
|
|
|
)
|
|
|
|
|
|
|
|
COLUMNS_TO_DROP = ["Rect.", "Contour"]
|
|
|
|
COLUMNS_RENAME_MAP = {
|
|
|
|
" ID ": "Pos.Id",
|
|
|
|
"Found": "Spot.Found",
|
|
|
|
"Dia.": "Spot.Diameter",
|
|
|
|
}
|
|
|
|
|
|
|
|
CACHE_FILE_NAME = "raw_data.h5"
|
|
|
|
|
|
|
|
FileInfo = namedtuple("FileInfo", ["row", "column", "exposure"])
|
|
|
|
|
|
|
|
|
|
|
|
def _get_cache_table_name():
|
|
|
|
""" automatic hdf5 table name, avoids a circular import """
|
|
|
|
from . import __version__
|
|
|
|
|
|
|
|
return f"v{__version__}"
|
|
|
|
|
|
|
|
|
|
|
|
def _guess_decimal_separator(file_handle):
|
|
|
|
""" guesses the decimal spearator of a opened data file """
|
|
|
|
file_handle.seek(0)
|
|
|
|
headers = next(file_handle) # noqa: F841
|
|
|
|
data = next(file_handle)
|
|
|
|
separator = "," if data.count(",") > data.count(".") else "."
|
|
|
|
file_handle.seek(0)
|
|
|
|
return separator
|
|
|
|
|
|
|
|
|
|
|
|
def _parse_csv(data_file):
|
|
|
|
""" parse a csv sensovation data file """
|
|
|
|
data_path = Path(data_file)
|
|
|
|
with data_path.open("r") as handle:
|
|
|
|
decimal_sep = _guess_decimal_separator(handle)
|
|
|
|
return pandas.read_csv(handle, sep="\t", decimal=decimal_sep)
|
|
|
|
|
|
|
|
|
|
|
|
def _extract_measurement_info(data_file):
|
|
|
|
""" extract measurement meta data from a file name """
|
|
|
|
data_path = Path(data_file)
|
|
|
|
*rest, well, exposure = data_path.stem.rsplit("_", 2) # noqa: F841
|
|
|
|
matched = REGEX_WELL.match(well)
|
|
|
|
if matched is None:
|
|
|
|
raise ValueError(f"not a valid well: '{well}'")
|
|
|
|
row = matched["row"].upper()
|
|
|
|
column = int(matched["column"])
|
|
|
|
exposure = int(exposure)
|
|
|
|
return FileInfo(row, column, exposure)
|
|
|
|
|
|
|
|
|
|
|
|
def _cleanup_data_columns(data_frame):
|
|
|
|
""" renames some data columns for consistency and drops unused columns """
|
|
|
|
renamed = data_frame.rename(columns=COLUMNS_RENAME_MAP)
|
|
|
|
return renamed.drop(columns=COLUMNS_TO_DROP)
|
|
|
|
|
|
|
|
|
|
|
|
def parse_file(data_file):
|
|
|
|
""" parses one data file and adds metadata to result """
|
|
|
|
measurement_info = _extract_measurement_info(data_file)
|
|
|
|
data_frame = _parse_csv(data_file)
|
|
|
|
data_frame["Well.Row"] = measurement_info.row
|
|
|
|
data_frame["Well.Column"] = measurement_info.column
|
|
|
|
data_frame["Exposure.Id"] = measurement_info.exposure
|
|
|
|
return _cleanup_data_columns(data_frame)
|
|
|
|
|
|
|
|
|
|
|
|
def parse_multiple_files(file_list):
|
|
|
|
""" parses a list of file paths to one combined dataframe """
|
|
|
|
if not file_list:
|
|
|
|
raise ValueError("Empty file list provided")
|
|
|
|
collection = (parse_file(path) for path in file_list)
|
|
|
|
data_frame = next(collection)
|
|
|
|
for next_frame in collection:
|
|
|
|
data_frame = data_frame.append(next_frame, ignore_index=True)
|
|
|
|
return data_frame
|
|
|
|
|
|
|
|
|
|
|
|
def _list_csv_files(folder):
|
|
|
|
""" returns all csv files in a folder """
|
|
|
|
folder_path = Path(folder)
|
|
|
|
files = (item for item in folder_path.iterdir() if item.is_file())
|
|
|
|
visible = (item for item in files if not item.stem.startswith("."))
|
|
|
|
return (item for item in visible if item.suffix.lower() == ".csv")
|
|
|
|
|
|
|
|
|
|
|
|
def _sanity_check(data_frame):
|
|
|
|
""" checks some basic constrains of a combined data frame """
|
|
|
|
field_rows = len(data_frame["Well.Row"].unique())
|
|
|
|
field_cols = len(data_frame["Well.Column"].unique())
|
|
|
|
exposures = len(data_frame["Exposure.Id"].unique())
|
|
|
|
spot_positions = len(data_frame["Pos.Id"].unique())
|
|
|
|
expected_rows = field_rows * field_cols * exposures * spot_positions
|
|
|
|
if expected_rows != len(data_frame):
|
|
|
|
raise ValueError("Measurements are missing")
|
|
|
|
return data_frame
|
|
|
|
|
|
|
|
|
|
|
|
def parse_folder(folder):
|
|
|
|
""" parses all csv files in a folder to one large dataframe """
|
|
|
|
file_list = _list_csv_files(folder)
|
|
|
|
data_frame = parse_multiple_files(file_list)
|
|
|
|
data_frame["Well.Row"] = data_frame["Well.Row"].astype("category")
|
|
|
|
return _sanity_check(data_frame)
|
|
|
|
|
|
|
|
|
|
|
|
def process_folder(folder, exposures=None, use_cache=True):
|
|
|
|
""" parses all csv files in a folder, adds some checks and more data """
|
|
|
|
hdf5_path = folder / CACHE_FILE_NAME
|
|
|
|
if use_cache:
|
|
|
|
try:
|
|
|
|
return pandas.read_hdf(hdf5_path, _get_cache_table_name())
|
|
|
|
except (FileNotFoundError, KeyError):
|
|
|
|
# either file or table doesn't exist
|
|
|
|
pass
|
|
|
|
data_frame = parse_folder(folder)
|
|
|
|
if use_cache:
|
|
|
|
try:
|
|
|
|
data_frame.to_hdf(
|
|
|
|
hdf5_path, _get_cache_table_name(), format="table"
|
|
|
|
)
|
|
|
|
except OSError:
|
|
|
|
# capturing high level OSError
|
|
|
|
# read only filesystems don't throw a more specific exception
|
|
|
|
pass
|
|
|
|
return data_frame
|