|
|
|
from collections import namedtuple
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
ExposureSetting = namedtuple("ExposureSetting", ["channel", "time"])
|
|
|
|
|
|
|
|
|
|
|
|
def test_split(data_frame_with_params):
|
|
|
|
from sensospot_data.utils import split
|
|
|
|
|
|
|
|
result = split(data_frame_with_params, "Well.Row")
|
|
|
|
|
|
|
|
assert set(result.keys()) == set("ABC")
|
|
|
|
for key, value_df in result.items():
|
|
|
|
assert set(value_df["Well.Row"].unique()) == {key}
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"value,expected",
|
|
|
|
[
|
|
|
|
[[1, 2], True],
|
|
|
|
[(1, 2), True],
|
|
|
|
[{1, 2}, False],
|
|
|
|
[{1: 2}, False],
|
|
|
|
["1, 2", False],
|
|
|
|
[None, False],
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_is_list_or_tuple(value, expected):
|
|
|
|
from sensospot_data.utils import _is_list_or_tuple
|
|
|
|
|
|
|
|
result = _is_list_or_tuple(value)
|
|
|
|
|
|
|
|
assert result is expected
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"value,expected",
|
|
|
|
[
|
|
|
|
[1, True],
|
|
|
|
[1.2, True],
|
|
|
|
[{1, 2}, False],
|
|
|
|
[{1: 2}, False],
|
|
|
|
["1", False],
|
|
|
|
[None, False],
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_is_numerical(value, expected):
|
|
|
|
from sensospot_data.utils import _is_numerical
|
|
|
|
|
|
|
|
result = _is_numerical(value)
|
|
|
|
|
|
|
|
assert result is expected
|
|
|
|
|
|
|
|
|
|
|
|
def test_check_valid_exposure_map_entry_ok():
|
|
|
|
from sensospot_data.utils import _check_valid_exposure_map_entry
|
|
|
|
|
|
|
|
result = _check_valid_exposure_map_entry((2, 1))
|
|
|
|
|
|
|
|
assert result is None
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"value", [[], [1], (1, 2, 3), {"a": 1, "b": 2}, ("A", "B")]
|
|
|
|
)
|
|
|
|
def test_check_valid_exposure_map_entry_raises_error(value):
|
|
|
|
from sensospot_data.utils import _check_valid_exposure_map_entry
|
|
|
|
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
_check_valid_exposure_map_entry(value)
|
|
|
|
|
|
|
|
|
|
|
|
def test_check_exposure_map_ok(exposure_df):
|
|
|
|
from sensospot_data.utils import _check_exposure_map
|
|
|
|
|
|
|
|
exposure_map = {1: ("A", 10), 2: ("B", 20), 3: ("C", 30)}
|
|
|
|
|
|
|
|
result = _check_exposure_map(exposure_df, exposure_map)
|
|
|
|
|
|
|
|
assert result is None
|
|
|
|
|
|
|
|
|
|
|
|
def test_check_exposure_map_wrong_type(exposure_df):
|
|
|
|
from sensospot_data.utils import _check_exposure_map
|
|
|
|
|
|
|
|
exposure_map = []
|
|
|
|
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
_check_exposure_map(exposure_df, exposure_map)
|
|
|
|
|
|
|
|
|
|
|
|
def test_check_exposure_map_wrong_ids(exposure_df):
|
|
|
|
from sensospot_data.utils import _check_exposure_map
|
|
|
|
|
|
|
|
exposure_map = {1: ("A", 10), 2: ("B", 20), 4: ("D", 40)}
|
|
|
|
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
_check_exposure_map(exposure_df, exposure_map)
|
|
|
|
|
|
|
|
|
|
|
|
def test_check_exposure_map_invalid_entries(exposure_df):
|
|
|
|
from sensospot_data.utils import _check_exposure_map
|
|
|
|
|
|
|
|
exposure_map = {1: ("A", 10), 2: ("B", 20), 3: "ERROR"}
|
|
|
|
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
_check_exposure_map(exposure_df, exposure_map)
|
|
|
|
|
|
|
|
|
|
|
|
def test_infer_exposure_from_parameters(data_frame_with_params):
|
|
|
|
from sensospot_data.utils import _set_exposure_data_from_parameters
|
|
|
|
|
|
|
|
result = _set_exposure_data_from_parameters(data_frame_with_params)
|
|
|
|
|
|
|
|
assert all(result["Exposure.Channel"] == result["Parameters.Channel"])
|
|
|
|
assert all(result["Exposure.Time"] == result["Parameters.Time"])
|
|
|
|
|
|
|
|
|
|
|
|
def test_infer_exposure_from_parameters_raises_error(
|
|
|
|
data_frame_without_params,
|
|
|
|
):
|
|
|
|
from sensospot_data.utils import _set_exposure_data_from_parameters
|
|
|
|
|
|
|
|
with pytest.raises(ValueError) as excinfo:
|
|
|
|
_set_exposure_data_from_parameters(data_frame_without_params)
|
|
|
|
|
|
|
|
assert str(excinfo.value).startswith("Exposure Map: measurement")
|
|
|
|
|
|
|
|
|
|
|
|
def test_apply_exposure_map(data_frame_with_params):
|
|
|
|
from sensospot_data.utils import apply_exposure_map
|
|
|
|
|
|
|
|
exposure_map = {
|
|
|
|
1: ExposureSetting("Cy3", 100),
|
|
|
|
2: ExposureSetting("Cy5", 15),
|
|
|
|
3: ExposureSetting("Cy5", 150),
|
|
|
|
}
|
|
|
|
|
|
|
|
result = apply_exposure_map(data_frame_with_params, exposure_map)
|
|
|
|
|
|
|
|
for key, value in exposure_map.items():
|
|
|
|
mask = result["Exposure.Id"] == key
|
|
|
|
partial = result.loc[mask]
|
|
|
|
assert set(partial["Exposure.Channel"].unique()) == {value.channel}
|
|
|
|
assert set(partial["Exposure.Time"].unique()) == {value.time}
|
|
|
|
|
|
|
|
|
|
|
|
def test_apply_exposure_map_raises_error(data_frame_with_params):
|
|
|
|
from sensospot_data.utils import apply_exposure_map
|
|
|
|
|
|
|
|
exposure_map = {
|
|
|
|
1: ExposureSetting("Cy3", 100),
|
|
|
|
2: ExposureSetting("Cy5", 15),
|
|
|
|
"X": ExposureSetting("Cy5", 150),
|
|
|
|
}
|
|
|
|
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
apply_exposure_map(data_frame_with_params, exposure_map)
|
|
|
|
|
|
|
|
|
|
|
|
def test_apply_exposure_map_from_parameters(data_frame_with_params):
|
|
|
|
from sensospot_data.utils import apply_exposure_map
|
|
|
|
|
|
|
|
result = apply_exposure_map(data_frame_with_params, None)
|
|
|
|
|
|
|
|
assert all(result["Exposure.Channel"] == result["Parameters.Channel"])
|
|
|
|
assert all(result["Exposure.Time"] == result["Parameters.Time"])
|
|
|
|
|
|
|
|
|
|
|
|
def test_apply_exposure_map_from_parameters_raises_error(
|
|
|
|
data_frame_without_params,
|
|
|
|
):
|
|
|
|
from sensospot_data.utils import apply_exposure_map
|
|
|
|
|
|
|
|
with pytest.raises(ValueError) as excinfo:
|
|
|
|
apply_exposure_map(data_frame_without_params, None)
|
|
|
|
|
|
|
|
assert str(excinfo.value).startswith("Exposure Map: measurement")
|
|
|
|
|
|
|
|
|
|
|
|
def test_aggregate_defaults(normalization_data_frame):
|
|
|
|
from sensospot_data.utils import aggregate
|
|
|
|
|
|
|
|
normalization_data_frame.rename(
|
|
|
|
columns={"Exposure.Time": "Exposure.Id"}, inplace=True
|
|
|
|
)
|
|
|
|
|
|
|
|
result = aggregate(normalization_data_frame, "Value", "median")
|
|
|
|
|
|
|
|
assert result.columns == ["Aggregated.Median.Value"]
|
|
|
|
assert result.index.names == ["Exposure.Id", "Well.Row", "Well.Column"]
|
|
|
|
assert list(result["Aggregated.Median.Value"]) == [
|
|
|
|
3,
|
|
|
|
30,
|
|
|
|
300,
|
|
|
|
2,
|
|
|
|
20,
|
|
|
|
200,
|
|
|
|
1,
|
|
|
|
10,
|
|
|
|
100,
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def test_aggregate_on(normalization_data_frame):
|
|
|
|
from sensospot_data.utils import aggregate
|
|
|
|
|
|
|
|
result = aggregate(
|
|
|
|
normalization_data_frame, "Value", "mean", on="Exposure.Time"
|
|
|
|
)
|
|
|
|
|
|
|
|
assert result.columns == ["Aggregated.Mean.Value"]
|
|
|
|
assert result.index.names == ["Exposure.Time"]
|
|
|
|
assert list(result["Aggregated.Mean.Value"]) == [111, 74, 37]
|
|
|
|
|
|
|
|
|
|
|
|
def test_aggregate_new_name(normalization_data_frame):
|
|
|
|
from sensospot_data.utils import aggregate
|
|
|
|
|
|
|
|
result = aggregate(
|
|
|
|
normalization_data_frame,
|
|
|
|
"Value",
|
|
|
|
"mean",
|
|
|
|
on="Exposure.Time",
|
|
|
|
new_name="Foo",
|
|
|
|
)
|
|
|
|
|
|
|
|
assert result.columns == ["Foo"]
|
|
|
|
assert result.index.names == ["Exposure.Time"]
|
|
|
|
assert list(result["Foo"]) == [111, 74, 37]
|
|
|
|
|
|
|
|
|
|
|
|
def test_add_aggregate_new_name(normalization_data_frame):
|
|
|
|
from sensospot_data.utils import add_aggregate
|
|
|
|
|
|
|
|
result = add_aggregate(
|
|
|
|
normalization_data_frame,
|
|
|
|
"Value",
|
|
|
|
"mean",
|
|
|
|
on="Exposure.Time",
|
|
|
|
new_name="Foo",
|
|
|
|
)
|
|
|
|
|
|
|
|
assert "Foo" in result.columns
|
|
|
|
assert len(result.columns) == len(normalization_data_frame.columns) + 1
|
|
|
|
assert result.index.names == [None]
|
|
|
|
|
|
|
|
for exp, val in [(10, 111), (25, 74), (50, 37)]:
|
|
|
|
mask = result["Exposure.Time"] == exp
|
|
|
|
assert result.loc[mask, "Foo"].unique() == [val]
|