Sensospot Data Parser ===================== Parsing the numerical output from Sensovation Sensospot image analysis. ## Example: ```python import sensospot_data # read the raw data of a folder raw_data = sensospot_data.parse_folder() sorted(raw_data.columns) == [ 'Bkg.Area', 'Bkg.Mean', 'Bkg.Median', 'Bkg.StdDev', 'Bkg.Sum', 'Exposure.Id', 'Parameters.Channel', 'Parameters.Time', 'Pos.Id', 'Pos.Nom.X', 'Pos.Nom.Y', 'Pos.X', 'Pos.Y', 'Spot.Area', 'Spot.Diameter', 'Spot.Found', 'Spot.Mean', 'Spot.Median', 'Spot.Saturation', 'Spot.StdDev', 'Spot.Sum', 'Well.Column', 'Well.Name', 'Well.Row'] ] ``` ## Avaliable functions: from .parser import parse_file, parse_folder # noqa: F401 - **parse_folder(path_to_folder)** Searches the folder for parsable .csv files, parses them into one big pandas data frame and will add additional meta data from parameters folder, if it is present. - **parse_file(path_to_csv_file)** Parses the csv file into a pandas data frame and will add additional some meta data from the file name. Is internally also used by `parse_folder()` ## CLI For the (propably) most important function, there is even a cli command ```sh Usage: parse_sensospot_data [OPTIONS] SOURCE Arguments: SOURCE: Folder with Sensospot measurement Options: -o, --outfile TEXT Output file name, relative to SOURCE, defaults to 'collected_data.csv' --help Show this message and exit. ``` ## Development To install the development version of Sensovation Data Parser: git clone https://git.cpi.imtek.uni-freiburg.de/holgi/sensospot_data.git # create a virtual environment and install all required dev dependencies cd sensospot_data make devenv To run the tests, use `make tests` (failing on first error) or `make coverage` for a complete report.