from collections import namedtuple import pandas import pytest from .conftest import EXAMPLE_DIR_WO_PARAMS, EXAMPLE_DIR_WITH_PARAMS ExposureSetting = namedtuple("ExposureSetting", ["channel", "time"]) @pytest.fixture(scope="session") def data_frame_with_params(example_dir): from sensospot_data.parser import parse_folder return parse_folder(example_dir / EXAMPLE_DIR_WITH_PARAMS) @pytest.fixture(scope="session") def data_frame_without_params(example_dir): from sensospot_data.parser import parse_folder return parse_folder(example_dir / EXAMPLE_DIR_WO_PARAMS) @pytest.fixture def df_wp(data_frame_with_params): return data_frame_with_params.copy() @pytest.fixture def df_wop(data_frame_without_params): return data_frame_without_params.copy() def test_split_data_frame(df_wp): from sensospot_data.normalisation import _split_data_frame result = _split_data_frame(df_wp, "Well.Row") assert set(result.keys()) == set("ABC") for key, value_df in result.items(): assert set(value_df["Well.Row"].unique()) == {key} def test_infer_exposure_from_parameters(df_wp): from sensospot_data.normalisation import _infer_exposure_from_parameters result = _infer_exposure_from_parameters(df_wp) assert all(result["Exposure.Channel"] == result["Parameters.Channel"]) assert all(result["Exposure.Time"] == result["Parameters.Time"]) def test_infer_exposure_from_parameters_raises_error(df_wop): from sensospot_data.normalisation import _infer_exposure_from_parameters with pytest.raises(ValueError) as excinfo: _infer_exposure_from_parameters(df_wop) assert str(excinfo.value).startswith("Exposure Map: measurement") def test_apply_exposure_map(df_wp): from sensospot_data.normalisation import apply_exposure_map exposure_map = { 1: ExposureSetting("Cy3", 100), 2: ExposureSetting("Cy5", 15), 3: ExposureSetting("Cy5", 150), } result = apply_exposure_map(df_wp, exposure_map) for key, value in exposure_map.items(): mask = result["Exposure.Id"] == key partial = result.loc[mask] assert set(partial["Exposure.Channel"].unique()) == {value.channel} assert set(partial["Exposure.Time"].unique()) == {value.time} def test_apply_exposure_map_raises_error(df_wp): from sensospot_data.normalisation import apply_exposure_map exposure_map = { 1: ExposureSetting("Cy3", 100), 2: ExposureSetting("Cy5", 15), "X": ExposureSetting("Cy5", 150), } with pytest.raises(ValueError) as excinfo: apply_exposure_map(df_wp, exposure_map) assert str(excinfo.value).startswith("Exposure Map differs") def test_apply_exposure_map_from_parameters(df_wp): from sensospot_data.normalisation import apply_exposure_map result = apply_exposure_map(df_wp, None) assert all(result["Exposure.Channel"] == result["Parameters.Channel"]) assert all(result["Exposure.Time"] == result["Parameters.Time"]) def test_apply_exposure_map_from_parameters_raises_error(df_wop): from sensospot_data.normalisation import apply_exposure_map with pytest.raises(ValueError) as excinfo: apply_exposure_map(df_wop, None) assert str(excinfo.value).startswith("Exposure Map: measurement") def test_check_overflow_limit_defaults(): from sensospot_data.normalisation import _check_overflow_limit data_frame = pandas.DataFrame(data={"Spot.Mean": [0.1, 0.5, 0.6]}) result = _check_overflow_limit(data_frame) assert list(result["Calc.Spot.Overflow"]) == [False, False, True] def test_check_overflow_limit_custom_limit(): from sensospot_data.normalisation import _check_overflow_limit data_frame = pandas.DataFrame(data={"Spot.Saturation": [4, 2, 3, 4]}) result = _check_overflow_limit(data_frame, "Spot.Saturation", 2) assert list(result["Calc.Spot.Overflow"]) == [True, False, True, True] def test_reduce_overflow_in_channel(normalization_data_frame): from sensospot_data.normalisation import ( _check_overflow_limit, _reduce_overflow_in_channel, ) data_frame = _check_overflow_limit( normalization_data_frame, "Saturation", 1 ) result = _reduce_overflow_in_channel(data_frame) sorted_results = result.sort_values( by=["Well.Row", "Well.Column", "Pos.Id"] ) assert list(sorted_results["Value"]) == [ 1, 2, 3, 1, 10, 10, 10, 10, 100, 100, 100, 100, ] def test_reduce_overflow_in_channel_shortcut(normalization_data_frame): from sensospot_data.normalisation import ( _check_overflow_limit, _reduce_overflow_in_channel, ) normalization_data_frame["Exposure.Time"] = 1 data_frame = _check_overflow_limit( normalization_data_frame, "Saturation", 1 ) result = _reduce_overflow_in_channel(data_frame) assert result is data_frame def test_reduce_overflow(normalization_data_frame): from sensospot_data.normalisation import reduce_overflow result = reduce_overflow(normalization_data_frame, "Saturation", 1) assert "Cy5" in result sorted_results = result["Cy5"].sort_values( by=["Well.Row", "Well.Column", "Pos.Id"] ) assert list(sorted_results["Value"]) == [ 1, 2, 3, 1, 10, 10, 10, 10, 100, 100, 100, 100, ] def test_infer_normalization_map(normalization_data_frame): from sensospot_data.normalisation import ( _split_data_frame, _infer_normalization_map, ) normalization_data_frame.loc[5, "Exposure.Channel"] = "Cy3" split_frames = _split_data_frame( normalization_data_frame, "Exposure.Channel" ) result = _infer_normalization_map(split_frames) assert result == {"Cy3": 25, "Cy5": 50} def test_normalize_channel(normalization_data_frame): from sensospot_data.columns import RAW_DATA_NORMALIZATION_MAP from sensospot_data.normalisation import reduce_overflow, normalize_channel reduced = reduce_overflow(normalization_data_frame, "Saturation", 1) result = normalize_channel(reduced["Cy5"], 50) sorted_results = result.sort_values( by=["Well.Row", "Well.Column", "Pos.Id"] ) expected_values = [2, 8, 30, 2, 20, 20, 20, 20, 200, 200, 200, 200] for normalized_col in RAW_DATA_NORMALIZATION_MAP.values(): list(sorted_results[normalized_col]) == expected_values def test_normalize_exposure_time(normalization_data_frame): from sensospot_data.normalisation import ( reduce_overflow, normalize_exposure_time, ) reduced = reduce_overflow(normalization_data_frame, "Saturation", 1) result = normalize_exposure_time(reduced) assert "Cy5" in result sorted_results = result["Cy5"].sort_values( by=["Well.Row", "Well.Column", "Pos.Id"] ) expected_values = [1, 4, 15, 1, 10, 10, 10, 10, 100, 100, 100, 100] assert list(sorted_results["Calc.Normalized.Spot.Mean"]) == expected_values def test_normalize_exposure_time_infered_map(normalization_data_frame): from sensospot_data.normalisation import ( reduce_overflow, normalize_exposure_time, ) reduced = reduce_overflow(normalization_data_frame, "Saturation", 1) result = normalize_exposure_time(reduced) assert "Cy5" in result sorted_results = result["Cy5"].sort_values( by=["Well.Row", "Well.Column", "Pos.Id"] ) expected_values = [1, 4, 15, 1, 10, 10, 10, 10, 100, 100, 100, 100] assert list(sorted_results["Calc.Normalized.Spot.Mean"]) == expected_values def test_normalize_measurement(df_wp): from sensospot_data.normalisation import split_channels exposure_map = { 1: ExposureSetting("Cy3", 100), 2: ExposureSetting("Cy5", 15), 3: ExposureSetting("Cy5", 150), } result = split_channels(df_wp, exposure_map) cy3_df, cy5_df = result["Cy3"], result["Cy5"] assert set(result.keys()) == {"Cy3", "Cy5"} assert cy3_df["Settings.Normalized.Exposure.Time"].unique() == 100 assert cy5_df["Settings.Normalized.Exposure.Time"].unique() == 150