Sensospot Data Parser ===================== Parsing the numerical output from Sensovation Sensospot image analysis and some other useful functions for working with the data. ## Example: ```python import sensospot_data # read the raw data of a folder raw_data = sensospot_data.parse_folder() # apply an exposure map to add more data: # key relates to column "Exposure.Id" # values are (Exposure.Channel, Exposure.Time) exposure_map = { 1: ("Cy3", 100), 2: ("Cy5", 150), 3: ("Cy5", 15), } enhanced_data = sensospot_data.apply_exposure_map(raw_data, exposure_map) # split the measurement according to channels channels = sensospot_data.split(enhanced_data "Exposure.Channel") # merge the two cy5 measurements together, creating an extended dynamic range cy5_xdr = sensospot_data.create_xdr(channels["cy5"], normalized_time=25) ``` ## Avaliable functions: from .parser import parse_file, parse_folder # noqa: F401 - **parse_folder(path_to_folder)** Searches the folder for parsable .csv files, parses them into one big pandas data frame and will add additional meta data from parameters folder, if it is present. - **parse_file(path_to_csv_file)** Parses the csv file into a pandas data frame and will add additional some meta data from the file name. Is internally also used by `parse_folder()` - **split(data_frame, column)** Splits a data frame based on the unique values of a column. Will return a dict, with the unique values as keys and the corresponding data frame as value - **apply_map(data_frame, map, index_col)** Adds information provided in the nested dictionary `map` to a data frame, based on the values in the data_frame column `index_col`. - **apply_exposure_map(data_frame, exposure_map)** Adds information about the channel and exposure time to a data frame, based on the exposure id. Will get bonus karma points, if the named tuple `ExposureInfo` is used: `{1:ExposureInfo("Cy3", 100), 2:ExposureInfo("Cy3", 100), }` - **ExposureInfo(exposure_channel, exposure_time)** A named tuple for defining an exposure map. Usage will increase readability and karma points. - **blend(data_frame, [column="Spot.Saturation", limit=2])** If provided with a data frame with multiple exposure times for the same exposure channel, the function will blend theese two times together based on given column and limit. - **normalize_values(data_frame, [normalized_time=None])** Adds new columns to the data frame with intensity values recalculated to the normalized exposure time. If no time is given, the max exposure time is used. - **create_xdr(data_frame, [normalized_time=None, column="Spot.Saturation", limit=2])** This combines the methods `blend()` and `normalize_values()` into one call. What a joy! ## CLI For the (propably) most important function, there is even a cli command ```sh Usage: parse_sensospot_data [OPTIONS] SOURCE Arguments: SOURCE: Folder with Sensospot measurement Options: -o, --outfile TEXT Output file name, relative to SOURCE, defaults to 'raw_data.h5' --help Show this message and exit. ``` ## Development To install the development version of Sensovation Data Parser: git clone https://git.cpi.imtek.uni-freiburg.de/holgi/sensospot_data.git # create a virtual environment and install all required dev dependencies cd sensospot_data make devenv To run the tests, use `make tests` (failing on first error) or `make coverage` for a complete report.