Parsing the numerical output from Sensovation SensoSpot image analysis.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

249 lines
7.4 KiB

import numpy
import pandas
import pytest
def test_check_if_xdr_ready_ok(exposure_df):
from sensospot_data.columns import (
SETTINGS_EXPOSURE_TIME,
SETTINGS_EXPOSURE_CHANNEL,
)
from sensospot_data.dynamic_range import _check_if_xdr_ready
exposure_df[SETTINGS_EXPOSURE_TIME] = 1
exposure_df[SETTINGS_EXPOSURE_CHANNEL] = 2
result = _check_if_xdr_ready(exposure_df)
assert result is None
@pytest.mark.parametrize(["run"], [[0], [1], [2]])
def test_check_if_xdr_ready_raises_error_missing_column(exposure_df, run):
from sensospot_data.columns import (
SETTINGS_EXPOSURE_TIME,
SETTINGS_EXPOSURE_CHANNEL,
)
from sensospot_data.dynamic_range import _check_if_xdr_ready
columns = [SETTINGS_EXPOSURE_TIME, SETTINGS_EXPOSURE_CHANNEL, "X"]
extra_col = columns[run]
exposure_df[extra_col] = 1
with pytest.raises(ValueError):
_check_if_xdr_ready(exposure_df)
def test_check_if_xdr_ready_raises_error_mixed_channels(exposure_df):
from sensospot_data.columns import (
META_DATA_EXPOSURE_ID,
SETTINGS_EXPOSURE_TIME,
SETTINGS_EXPOSURE_CHANNEL,
)
from sensospot_data.dynamic_range import _check_if_xdr_ready
exposure_df[SETTINGS_EXPOSURE_TIME] = 1
exposure_df[SETTINGS_EXPOSURE_CHANNEL] = exposure_df[META_DATA_EXPOSURE_ID]
with pytest.raises(ValueError):
_check_if_xdr_ready(exposure_df)
def test_check_if_xdr_ready_raises_error_non_numeric_time(exposure_df):
from sensospot_data.columns import (
SETTINGS_EXPOSURE_TIME,
SETTINGS_EXPOSURE_CHANNEL,
)
from sensospot_data.dynamic_range import _check_if_xdr_ready
exposure_df[SETTINGS_EXPOSURE_TIME] = "X"
exposure_df[SETTINGS_EXPOSURE_CHANNEL] = 2
with pytest.raises(ValueError):
_check_if_xdr_ready(exposure_df)
def test_check_if_xdr_ready_raises_error_on_nan(exposure_df):
from sensospot_data.columns import (
SETTINGS_EXPOSURE_TIME,
SETTINGS_EXPOSURE_CHANNEL,
)
from sensospot_data.dynamic_range import _check_if_xdr_ready
exposure_df[SETTINGS_EXPOSURE_TIME] = numpy.nan
exposure_df[SETTINGS_EXPOSURE_CHANNEL] = 2
with pytest.raises(ValueError):
_check_if_xdr_ready(exposure_df)
def test_check_overflow_limit_defaults():
from sensospot_data.columns import CALC_SPOT_OVERFLOW, RAW_DATA_SPOT_SAT
from sensospot_data.dynamic_range import _calc_overflow_info
data_frame = pandas.DataFrame(data={RAW_DATA_SPOT_SAT: [1, 2, 3]})
result = _calc_overflow_info(data_frame)
assert list(result[CALC_SPOT_OVERFLOW]) == [False, False, True]
def test_check_overflow_limit_custom_limit():
from sensospot_data.columns import CALC_SPOT_OVERFLOW
from sensospot_data.dynamic_range import _calc_overflow_info
data_frame = pandas.DataFrame(data={"X": [4, 2, 3, 4]})
result = _calc_overflow_info(data_frame, "X", 2)
assert list(result[CALC_SPOT_OVERFLOW]) == [True, False, True, True]
def test_reduce_overflow_multiple_times(normalization_data_frame):
from sensospot_data.dynamic_range import (
PROBE_MULTI_INDEX,
_reduce_overflow,
_calc_overflow_info,
)
data_frame = _calc_overflow_info(normalization_data_frame, "Saturation", 1)
result = _reduce_overflow(data_frame)
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX)
assert list(sorted_results["Value"]) == [
1,
2,
3,
1,
10,
10,
10,
10,
100,
100,
100,
100,
]
def test_reduce_overflow_only_one_exposure_time(normalization_data_frame):
from sensospot_data.dynamic_range import (
SETTINGS_EXPOSURE_TIME,
_reduce_overflow,
_calc_overflow_info,
)
normalization_data_frame[SETTINGS_EXPOSURE_TIME] = 1
data_frame = _calc_overflow_info(normalization_data_frame, "Saturation", 1)
result = _reduce_overflow(data_frame)
assert list(result["Value"]) == list(normalization_data_frame["Value"])
def test_blend(normalization_data_frame):
from sensospot_data.dynamic_range import PROBE_MULTI_INDEX, blend
result = blend(normalization_data_frame, "Saturation", 1)
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX)
assert list(sorted_results["Value"]) == [
1,
2,
3,
1,
10,
10,
10,
10,
100,
100,
100,
100,
]
def test_blend_raises_error(normalization_data_frame):
from sensospot_data.dynamic_range import SETTINGS_EXPOSURE_TIME, blend
normalization_data_frame[SETTINGS_EXPOSURE_TIME] = "A"
with pytest.raises(ValueError):
blend(normalization_data_frame, "Saturation", 1)
def test_normalize_values_no_param(normalization_data_frame):
from sensospot_data.columns import RAW_DATA_NORMALIZATION_MAP
from sensospot_data.dynamic_range import (
PROBE_MULTI_INDEX,
blend,
normalize_values,
)
reduced = blend(normalization_data_frame, "Saturation", 1)
result = normalize_values(reduced)
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX)
expected_values = [1, 4, 15, 1, 10, 10, 10, 10, 100, 100, 100, 100]
for normalized_col in RAW_DATA_NORMALIZATION_MAP.values():
assert list(sorted_results[normalized_col]) == expected_values
def test_normalize_values_custom_param(normalization_data_frame):
from sensospot_data.columns import RAW_DATA_NORMALIZATION_MAP
from sensospot_data.dynamic_range import (
PROBE_MULTI_INDEX,
blend,
normalize_values,
)
reduced = blend(normalization_data_frame, "Saturation", 1)
result = normalize_values(reduced, 100)
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX)
expected_values = [2, 8, 30, 2, 20, 20, 20, 20, 200, 200, 200, 200]
for normalized_col in RAW_DATA_NORMALIZATION_MAP.values():
assert list(sorted_results[normalized_col]) == expected_values
def test_normalize_values_preset_param(normalization_data_frame):
from sensospot_data.columns import (
RAW_DATA_NORMALIZATION_MAP,
SETTINGS_NORMALIZED_EXPOSURE_TIME,
)
from sensospot_data.dynamic_range import (
PROBE_MULTI_INDEX,
blend,
normalize_values,
)
reduced = blend(normalization_data_frame, "Saturation", 1)
reduced[SETTINGS_NORMALIZED_EXPOSURE_TIME] = 100
result = normalize_values(reduced)
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX)
expected_values = [2, 8, 30, 2, 20, 20, 20, 20, 200, 200, 200, 200]
for normalized_col in RAW_DATA_NORMALIZATION_MAP.values():
assert list(sorted_results[normalized_col]) == expected_values
def test_create_xdr(normalization_data_frame):
from sensospot_data.columns import RAW_DATA_NORMALIZATION_MAP
from sensospot_data.dynamic_range import PROBE_MULTI_INDEX, create_xdr
result = create_xdr(normalization_data_frame, 100, "Saturation", 1)
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX)
expected_values = [2, 8, 30, 2, 20, 20, 20, 20, 200, 200, 200, 200]
for normalized_col in RAW_DATA_NORMALIZATION_MAP.values():
assert list(sorted_results[normalized_col]) == expected_values