Parsing the numerical output from Sensovation SensoSpot image analysis.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

283 lines
7.8 KiB

from collections import namedtuple
import pandas
import pytest
from .conftest import EXAMPLE_DIR_WO_PARAMS, EXAMPLE_DIR_WITH_PARAMS
ExposureSetting = namedtuple("ExposureSetting", ["channel", "time"])
@pytest.fixture(scope="session")
def data_frame_with_params(example_dir):
from sensospot_data.parser import parse_folder
return parse_folder(example_dir / EXAMPLE_DIR_WITH_PARAMS)
@pytest.fixture(scope="session")
def data_frame_without_params(example_dir):
from sensospot_data.parser import parse_folder
return parse_folder(example_dir / EXAMPLE_DIR_WO_PARAMS)
@pytest.fixture
def df_wp(data_frame_with_params):
return data_frame_with_params.copy()
@pytest.fixture
def df_wop(data_frame_without_params):
return data_frame_without_params.copy()
def test_infer_exposure_from_parameters(df_wp):
from sensospot_data.normalisation import _infer_exposure_from_parameters
result = _infer_exposure_from_parameters(df_wp)
assert all(result["Exposure.Channel"] == result["Parameters.Channel"])
assert all(result["Exposure.Time"] == result["Parameters.Time"])
def test_infer_exposure_from_parameters_raises_error(df_wop):
from sensospot_data.normalisation import _infer_exposure_from_parameters
with pytest.raises(ValueError) as excinfo:
_infer_exposure_from_parameters(df_wop)
assert str(excinfo.value).startswith("Exposure Map: measurement")
def test_apply_exposure_map(df_wp):
from sensospot_data.normalisation import apply_exposure_map
exposure_map = {
1: ExposureSetting("Cy3", 100),
2: ExposureSetting("Cy5", 15),
3: ExposureSetting("Cy5", 150),
}
result = apply_exposure_map(df_wp, exposure_map)
for key, value in exposure_map.items():
mask = result["Exposure.Id"] == key
partial = result.loc[mask]
assert set(partial["Exposure.Channel"].unique()) == {value.channel}
assert set(partial["Exposure.Time"].unique()) == {value.time}
def test_apply_exposure_map_raises_error(df_wp):
from sensospot_data.normalisation import apply_exposure_map
exposure_map = {
1: ExposureSetting("Cy3", 100),
2: ExposureSetting("Cy5", 15),
"X": ExposureSetting("Cy5", 150),
}
with pytest.raises(ValueError) as excinfo:
apply_exposure_map(df_wp, exposure_map)
assert str(excinfo.value).startswith("Exposure Map differs")
def test_apply_exposure_map_from_parameters(df_wp):
from sensospot_data.normalisation import apply_exposure_map
result = apply_exposure_map(df_wp, None)
assert all(result["Exposure.Channel"] == result["Parameters.Channel"])
assert all(result["Exposure.Time"] == result["Parameters.Time"])
def test_apply_exposure_map_from_parameters_raises_error(df_wop):
from sensospot_data.normalisation import apply_exposure_map
with pytest.raises(ValueError) as excinfo:
apply_exposure_map(df_wop, None)
assert str(excinfo.value).startswith("Exposure Map: measurement")
def test_check_overflow_limit_defaults():
from sensospot_data.normalisation import _check_overflow_limit
data_frame = pandas.DataFrame(data={"Spot.Mean": [0.1, 0.5, 0.6]})
result = _check_overflow_limit(data_frame)
assert list(result["Calc.Spot.Overflow"]) == [False, False, True]
def test_check_overflow_limit_custom_limit():
from sensospot_data.normalisation import _check_overflow_limit
data_frame = pandas.DataFrame(data={"Spot.Saturation": [4, 2, 3, 4]})
result = _check_overflow_limit(data_frame, "Spot.Saturation", 2)
assert list(result["Calc.Spot.Overflow"]) == [True, False, True, True]
def test_reduce_overflow_in_channel(normalization_data_frame):
from sensospot_data.normalisation import (
_check_overflow_limit,
_reduce_overflow_in_channel,
)
data_frame = _check_overflow_limit(
normalization_data_frame, "Saturation", 1
)
result = _reduce_overflow_in_channel(data_frame)
sorted_results = result.sort_values(
by=["Well.Row", "Well.Column", "Pos.Id"]
)
assert list(sorted_results["Value"]) == [
1,
2,
3,
1,
10,
10,
10,
10,
100,
100,
100,
100,
]
def test_reduce_overflow_in_channel_shortcut(normalization_data_frame):
from sensospot_data.normalisation import (
_check_overflow_limit,
_reduce_overflow_in_channel,
)
normalization_data_frame["Exposure.Time"] = 1
data_frame = _check_overflow_limit(
normalization_data_frame, "Saturation", 1
)
result = _reduce_overflow_in_channel(data_frame)
assert result is data_frame
def test_reduce_overflow(normalization_data_frame):
from sensospot_data.normalisation import reduce_overflow
result = reduce_overflow(normalization_data_frame, "Saturation", 1)
assert "Cy5" in result
sorted_results = result["Cy5"].sort_values(
by=["Well.Row", "Well.Column", "Pos.Id"]
)
assert list(sorted_results["Value"]) == [
1,
2,
3,
1,
10,
10,
10,
10,
100,
100,
100,
100,
]
def test_infer_normalization_map(normalization_data_frame):
from sensospot_data.utils import split_data_frame
from sensospot_data.normalisation import (
_infer_normalization_map,
)
normalization_data_frame.loc[5, "Exposure.Channel"] = "Cy3"
split_frames = split_data_frame(
normalization_data_frame, "Exposure.Channel"
)
result = _infer_normalization_map(split_frames)
assert result == {"Cy3": 25, "Cy5": 50}
def test_normalize_channel(normalization_data_frame):
from sensospot_data.columns import RAW_DATA_NORMALIZATION_MAP
from sensospot_data.normalisation import reduce_overflow, normalize_channel
reduced = reduce_overflow(normalization_data_frame, "Saturation", 1)
result = normalize_channel(reduced["Cy5"], 50)
sorted_results = result.sort_values(
by=["Well.Row", "Well.Column", "Pos.Id"]
)
expected_values = [2, 8, 30, 2, 20, 20, 20, 20, 200, 200, 200, 200]
for normalized_col in RAW_DATA_NORMALIZATION_MAP.values():
list(sorted_results[normalized_col]) == expected_values
def test_normalize_exposure_time(normalization_data_frame):
from sensospot_data.normalisation import (
reduce_overflow,
normalize_exposure_time,
)
reduced = reduce_overflow(normalization_data_frame, "Saturation", 1)
result = normalize_exposure_time(reduced)
assert "Cy5" in result
sorted_results = result["Cy5"].sort_values(
by=["Well.Row", "Well.Column", "Pos.Id"]
)
expected_values = [1, 4, 15, 1, 10, 10, 10, 10, 100, 100, 100, 100]
assert list(sorted_results["Calc.Normalized.Spot.Mean"]) == expected_values
def test_normalize_exposure_time_infered_map(normalization_data_frame):
from sensospot_data.normalisation import (
reduce_overflow,
normalize_exposure_time,
)
reduced = reduce_overflow(normalization_data_frame, "Saturation", 1)
result = normalize_exposure_time(reduced)
assert "Cy5" in result
sorted_results = result["Cy5"].sort_values(
by=["Well.Row", "Well.Column", "Pos.Id"]
)
expected_values = [1, 4, 15, 1, 10, 10, 10, 10, 100, 100, 100, 100]
assert list(sorted_results["Calc.Normalized.Spot.Mean"]) == expected_values
def test_normalize_measurement(df_wp):
from sensospot_data.normalisation import split_channels
exposure_map = {
1: ExposureSetting("Cy3", 100),
2: ExposureSetting("Cy5", 15),
3: ExposureSetting("Cy5", 150),
}
result = split_channels(df_wp, exposure_map)
cy3_df, cy5_df = result["Cy3"], result["Cy5"]
assert set(result.keys()) == {"Cy3", "Cy5"}
assert cy3_df["Settings.Normalized.Exposure.Time"].unique() == 100
assert cy5_df["Settings.Normalized.Exposure.Time"].unique() == 150