Some simple tools for working with parsed Sensospot data.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

71 lines
1.7 KiB

import pytest
CSV_DATA = """
animal carnivore value
dog TRUE 3
cat TRUE 55
horse FALSE 35
cat TRUE 60
horse FALSE 9
"""
@pytest.fixture()
def example():
import io
import pandas
buffer = io.StringIO(CSV_DATA.strip())
return pandas.read_csv(buffer, sep="\t")
def test_selection_select(example):
from sensospot_tools.selection import select
result = select(example, "animal", "horse")
assert list(result["animal"]) == ["horse", "horse"]
assert list(result["value"]) == [35, 9]
def test_selection_split_one_column_without_na(example):
from sensospot_tools.selection import split
result = dict(split(example, "carnivore"))
assert sorted(result.keys()) == [False, True]
assert list(result[True]["value"]) == [3, 55, 60]
assert list(result[False]["value"]) == [35, 9]
def test_selection_split_one_column_with_na(example):
import numpy
from sensospot_tools.selection import split
example["carnivore"].iloc[1] = numpy.nan
result = dict(split(example, "carnivore"))
assert set(result.keys()) == {False, True, numpy.nan}
assert list(result[True]["value"]) == [3, 60]
assert list(result[False]["value"]) == [35, 9]
assert list(result[numpy.nan]["value"]) == [55]
def test_selection_split_multiple_columns(example):
from sensospot_tools.selection import split
result = {
(key_1, key_2): value
for key_1, key_2, value in split(example, "carnivore", "animal")
}
assert sorted(result.keys()) == [
(False, "horse"),
(True, "cat"),
(True, "dog"),
]
assert list(result[(True, "cat")]["value"]) == [55, 60]
assert list(result[(True, "dog")]["value"]) == [3]
assert list(result[(False, "horse")]["value"]) == [35, 9]