|
|
|
# snippets
|
|
|
|
|
|
|
|
Misc code snippets I sometimes need and always have to look up how it works...
|
|
|
|
|
|
|
|
|
|
|
|
## linear_regression.py
|
|
|
|
|
|
|
|
Calculate the linear regression on two columns of a data frame. The resulting
|
|
|
|
object has the function `predict()` to calculate x or y values for a given
|
|
|
|
counterpart.
|
|
|
|
|
|
|
|
```python
|
|
|
|
from linear_regression import linear_regression
|
|
|
|
|
|
|
|
df = pd.DataFrame({"temperature":[...], "signal":[...]})
|
|
|
|
|
|
|
|
regression = linear_regression(df, x="temperature", y="signal")
|
|
|
|
|
|
|
|
repr(regression) == "Regression(intercept=1, coefficient=3, score=0.9998)"
|
|
|
|
|
|
|
|
regression.predict(x=3) == 10
|
|
|
|
regression.predict(y=7) == 2
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
## split_uniques.py
|
|
|
|
|
|
|
|
Splits a data frame on uniques values in a column
|
|
|
|
|
|
|
|
Returns a generator of tuples with at least two elements.
|
|
|
|
The _last_ element is the resulting partial data frame,
|
|
|
|
the element(s) before are the values used to split up the original data.
|
|
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
from split_uniques import split_uniques
|
|
|
|
|
|
|
|
df = pd.DataFrame({
|
|
|
|
"A": [1, 2, 2],
|
|
|
|
"B": [3, 4, 3],
|
|
|
|
"C": ["x", "y", "z"]
|
|
|
|
})
|
|
|
|
|
|
|
|
result = list(split_uniques(df, ["B"]))
|
|
|
|
|
|
|
|
assert len(result) == 3
|
|
|
|
|
|
|
|
value, data = result[0]
|
|
|
|
assert value == 3
|
|
|
|
assert data == pd.DataFrame({
|
|
|
|
"A": [1, 1],
|
|
|
|
"B": [3, 3],
|
|
|
|
"C": ["x", "z"]
|
|
|
|
})
|
|
|
|
|
|
|
|
value, data = result[1]
|
|
|
|
assert value == 4
|
|
|
|
assert data == pd.DataFrame({
|
|
|
|
"A": [2],
|
|
|
|
"B": [4],
|
|
|
|
"C": ["y"]
|
|
|
|
})
|
|
|
|
```
|
|
|
|
|
|
|
|
This construct might look a little bit weird, but it makes it easy to use the
|
|
|
|
function in a loop definition:
|
|
|
|
|
|
|
|
```python
|
|
|
|
for well, probe, partial_data in split_uniques(full_data, ["Well", "Probe"]):
|
|
|
|
...
|
|
|
|
```
|