Misc code snippets
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

98 lines
2.9 KiB

import dataclasses
import pandas as pd
import pytest
from sklearn import linear_model
@dataclasses.dataclass
class Regression:
intercept: float
coefficient: float
score: float
@property
def coeff(self) -> float:
return self.coefficient
@property
def r2(self) -> float:
return self.score
def predict(self, *, x: int | float = None, y: int | float = None) -> float:
"""predict a value if x or y is given"""
if x is not None and y is not None:
msg = "predict() expects one keyword argument 'x' or 'y', got both"
raise TypeError(msg)
if x is not None:
return self.intercept + x * self.coefficient
if y is not None:
return (y - self.intercept) / self.coefficient
msg = "predict() expects a keyword argument 'x' or 'y'"
raise TypeError(msg)
def to_dict(self):
return dataclasses.asdict(self)
def linear_regression(data: pd.DataFrame, *, x: str, y: str) -> Regression:
"""calculates a linear regression for two columns of a DataFrame"""
x_values = data[x].values.reshape(-1, 1)
y_values = data[y].values.reshape(-1, 1)
fit = linear_model.LinearRegression().fit(x_values, y_values)
score = fit.score(x_values, y_values)
return Regression(fit.intercept_[0], fit.coef_[0][0], score)
# tests
@pytest.fixture()
def example_data() -> pd.DataFrame:
x = list(range(1, 6))
y = [4.1, 6.9, 10.1, 12.9, 15.9]
return pd.DataFrame({"A": x, "B": y})
def test_linear_regression(example_data):
result = linear_regression(example_data, x="A", y="B")
assert isinstance(result, Regression)
assert pytest.approx(2.96) == result.coefficient
assert pytest.approx(2.96) == result.coeff
assert pytest.approx(1.1) == result.intercept
assert pytest.approx(0.9996349) == result.score
assert pytest.approx(0.9996349) == result.r2
def test_regression_predict(example_data):
regression = linear_regression(example_data, x="A", y="B")
prediction = regression.predict(x=10)
assert pytest.approx(30.7) == prediction
assert pytest.approx(10) == regression.predict(y=prediction)
def test_regression_predict_exceptions(example_data):
regression = linear_regression(example_data, x="A", y="B")
with pytest.raises(TypeError, match="expects a keyword"):
regression.predict()
with pytest.raises(TypeError, match="expects one keyword"):
regression.predict(x=1, y=2)
with pytest.raises(TypeError, match="takes 1 positional argument but"):
regression.predict(1)
def test_regression_to_dict(example_data):
regression = linear_regression(example_data, x="A", y="B")
result = regression.to_dict()
assert sorted(result.keys()) == ["coefficient", "intercept", "score"]
assert pytest.approx(2.96) == result["coefficient"]
assert pytest.approx(1.1) == result["intercept"]
assert pytest.approx(0.9996349) == result["score"]