Browse Source

added module for calibration data

main
Holger Frey 1 year ago
parent
commit
0c6fe58338
  1. 1
      src/conda_helpers/__init__.py
  2. 83
      src/conda_helpers/calibration.py
  3. 83
      tests/test_calibration.py
  4. 1
      tests/test_conda_helpers.py

1
src/conda_helpers/__init__.py

@ -8,5 +8,6 @@ __version__ = "0.0.2"
from sensospot_tools import select, split # noqa: F401 from sensospot_tools import select, split # noqa: F401
from .calibration import prepare_calibration_data # noqa: F401
from .linear_regression import linear_regression # noqa: F401 from .linear_regression import linear_regression # noqa: F401
from .mbp import add_exposure_info, normalize # noqa: F401 from .mbp import add_exposure_info, normalize # noqa: F401

83
src/conda_helpers/calibration.py

@ -0,0 +1,83 @@
import pandas as pd
EXPOSURE_ID = "Exposure.Id"
EXPOSURE_CHANNEL = "Exposure.Channel"
EXPOSURE_TIME = "Exposure.Time"
CLASSIC_CALIBRATION_EXPOSURES = 4
EXPOSURE_COLUMNS = [
EXPOSURE_ID,
EXPOSURE_CHANNEL,
EXPOSURE_TIME,
]
POS_TO_IGNORE = [
1,
2,
9,
10,
11,
12,
19,
20,
71,
72,
81,
82,
89,
90,
91,
92,
99,
100,
]
SIGNAL_SOURCE = "Signal.Source"
SIGNAL_INTENSITY = "Signal.Intensity"
SPOT_MEDIAN = "Spot.Median"
BKG_MEDIAN = "Bkg.Median"
SIGNAL_COLUMNS = [SPOT_MEDIAN, BKG_MEDIAN]
def add_exposure_info(data: pd.DataFrame) -> pd.DataFrame:
if len(data[EXPOSURE_ID].unique()) == CLASSIC_CALIBRATION_EXPOSURES:
exposure_values = [
(1, "Cy3", 100),
(2, "Cy3", 10),
(3, "Cy5", 60),
(4, "Cy5", 6),
]
else:
exposure_values = [
(1, "Cy3", 100),
(2, "Cy3", 30),
(3, "Cy3", 10),
(4, "Cy5", 60),
(5, "Cy5", 18),
(6, "Cy5", 6),
]
exposure_df = pd.DataFrame(exposure_values, columns=EXPOSURE_COLUMNS)
return data.merge(exposure_df, on=EXPOSURE_ID)
def remove_non_signal_positions(data: pd.DataFrame) -> pd.DataFrame:
selection = data["Pos.Id"].isin(POS_TO_IGNORE)
return data.loc[~selection].copy()
def add_signal_columns(data: pd.DataFrame) -> pd.DataFrame:
def _generate_signal_columns():
for column in SIGNAL_COLUMNS:
copied = data.copy()
copied[SIGNAL_SOURCE] = column
copied[SIGNAL_INTENSITY] = data[column]
yield copied
return pd.concat(_generate_signal_columns()).reset_index(drop=True)
def prepare_calibration_data(data: pd.DataFrame) -> pd.DataFrame:
with_exposures = add_exposure_info(data)
only_signals = remove_non_signal_positions(with_exposures)
return add_signal_columns(only_signals)

83
tests/test_calibration.py

@ -0,0 +1,83 @@
import pandas as pd
import pytest
def _generate_example_data(exposures):
values = [(i, i * 10, i * 100) for i in range(1, exposures + 1)]
columns = ["Exposure.Id", "Bkg.Median", "Spot.Median"]
return pd.DataFrame(values, columns=columns)
@pytest.fixture()
def classic_example_data():
return _generate_example_data(4)
@pytest.fixture()
def regression_example_data():
return _generate_example_data(6)
def test_add_exposure_info_classic(classic_example_data):
from conda_helpers.calibration import add_exposure_info
result = add_exposure_info(classic_example_data)
assert list(result["Exposure.Channel"]) == ["Cy3"] * 2 + ["Cy5"] * 2
assert list(result["Exposure.Time"]) == [100, 10, 60, 6]
def test_add_exposure_info_regression(regression_example_data):
from conda_helpers.calibration import add_exposure_info
result = add_exposure_info(regression_example_data)
assert list(result["Exposure.Channel"]) == ["Cy3"] * 3 + ["Cy5"] * 3
assert list(result["Exposure.Time"]) == [100, 30, 10, 60, 18, 6]
def test_remove_non_signal_positions():
from conda_helpers.calibration import remove_non_signal_positions
data = pd.DataFrame(range(1, 12), columns=["Pos.Id"])
result = remove_non_signal_positions(data)
assert set(result["Pos.Id"]) == {3, 4, 5, 6, 7, 8}
def test_add_signal_columns(classic_example_data):
from conda_helpers.calibration import add_signal_columns
result = add_signal_columns(classic_example_data)
assert len(result) == 2 * len(classic_example_data)
assert (
list(result["Signal.Source"])
== ["Spot.Median"] * 4 + ["Bkg.Median"] * 4
)
assert list(result["Signal.Intensity"]) == [
100,
200,
300,
400,
10,
20,
30,
40,
]
def test_prepare_calibration_data(classic_example_data):
from conda_helpers.calibration import prepare_calibration_data
classic_example_data["Pos.Id"] = 0
result = prepare_calibration_data(classic_example_data)
assert len(result) == 2 * len(classic_example_data)
assert "Exposure.Channel" in result.columns
assert "Exposure.Time" in result.columns
assert "Signal.Source" in result.columns
assert "Signal.Intensity" in result.columns

1
tests/test_conda_helpers.py

@ -27,6 +27,7 @@ def test_api():
add_exposure_info, # noqa: F401 add_exposure_info, # noqa: F401
linear_regression, # noqa: F401 linear_regression, # noqa: F401
normalize, # noqa: F401 normalize, # noqa: F401
prepare_calibration_data, # noqa: F401
select, # noqa: F401 select, # noqa: F401
split, # noqa: F401 split, # noqa: F401
) )

Loading…
Cancel
Save