Browse Source

first working version

main
Holger Frey 4 years ago
parent
commit
b62b35597b
  1. 4
      .gitignore
  2. 3
      pyproject.toml
  3. 24
      run.py
  4. 112
      sensospot_images/__init__.py
  5. BIN
      sensospot_images/arial.ttf
  6. 90
      sensospot_images/images.py
  7. 54
      sensospot_images/parameters.py

4
.gitignore vendored

@ -1,3 +1,7 @@ @@ -1,3 +1,7 @@
# This project
example_output/
# ---> Python
# Byte-compiled / optimized / DLL files
__pycache__/

3
pyproject.toml

@ -24,7 +24,8 @@ classifiers = [ @@ -24,7 +24,8 @@ classifiers = [
]
requires = [
"sensospot_data",
"Pillow >= 8.0",
]
requires-python = ">=3.7"

24
run.py

@ -0,0 +1,24 @@ @@ -0,0 +1,24 @@
from pathlib import Path
from PIL import Image, ImageDraw, ImageFont
from sensospot_images import process
from sensospot_data import parse_file
from sensospot_data.parameters import _search_measurement_params_file
from defusedxml import ElementTree
import itertools
THIS_FILE_DIR = Path(__file__).absolute().parent
EXAMPLE_DATA_DIR = THIS_FILE_DIR / "example_data"
EXAMPLE_IMAGE = EXAMPLE_DATA_DIR / "11Aug2020 NQC0329 Dry SG2-127-002_1_A01_1.tif"
EXAMPLE_DATA = EXAMPLE_DATA_DIR / "11Aug2020 NQC0329 Dry SG2-127-002_1_A01_1.csv"
OUTPUT_DIR = THIS_FILE_DIR / "example_output"
old_output_files = [i for i in OUTPUT_DIR.iterdir() if i.is_file()]
for path in old_output_files:
path.unlink()
process(EXAMPLE_DATA_DIR, OUTPUT_DIR)

112
sensospot_images/__init__.py

@ -4,3 +4,115 @@ Creating nice spot images from scans @@ -4,3 +4,115 @@ Creating nice spot images from scans
"""
__version__ = "0.0.1"
from pathlib import Path
import sys
from sensospot_data import parse_file
from sensospot_data.parameters import _search_measurement_params_file
from .images import recalculate, get_position, annotate_image, load_array_image, crop
from .parameters import get_spot_parameters, get_array_parameters
def calulate_pixel_size(data_frame, array_definition):
first = get_position(data_frame.iloc[0], actual=False)
last = get_position(data_frame.iloc[-1], actual=False)
x_dist_pixel = last.x - first.x
y_dist_pixel = last.y - first.y
ad = array_definition
x_dist_um = ad.dist_x * (ad.size_x - 1)
y_dist_um = ad.dist_y * (ad.size_y - 1)
if x_dist_um == 0:
# only one spot in x direction
return x_dist_um / x_dist_pixel
elif y_dist_um == 0:
# only one spot in x direction
return y_dist_um / y_dist_pixel
# more than one spot in each direction
x_pixel_size = x_dist_um / x_dist_pixel
y_pixel_size = y_dist_um / y_dist_pixel
return (x_pixel_size + y_pixel_size) / 2
def get_example_data_path(input_dir):
input_path = Path(input_dir)
tif_files = input_path.glob("*.tif")
example_tif = next(tif_files)
return example_tif.with_suffix(".csv")
def get_filename_prefix(input_dir):
file_path = get_example_data_path(input_dir)
example_name = file_path.stem
prefix, well, exposure = example_name.rsplit("_", 2)
return prefix
def retrieve_spot_parameters(input_dir, scale):
parameters_path = _search_measurement_params_file(input_dir)
if parameters_path is None:
sys.exit(f"Could not find parameter files in {input_dir}")
array_parameters = get_array_parameters(parameters_path)
spot_parameters = get_spot_parameters(parameters_path, array_parameters)
example_data_path = get_example_data_path(input_dir)
example_data = parse_file(example_data_path)
pixel_size = calulate_pixel_size(example_data, array_parameters)
return recalculate(spot_parameters, scale / pixel_size)
def search_image_files(input_dir, wells, exposures):
input_path = Path(input_dir)
prefix = get_filename_prefix(input_path)
tmp_pattern = f"{prefix}_*{wells}*_*{exposures}.tif"
pattern = tmp_pattern.replace("***", "*").replace("**", "*")
return input_path.glob(pattern)
def create_file_map(input_dir, wells, exposures):
file_map = {}
for tif_path in search_image_files(input_dir, wells, exposures):
rest, exposure = tif_path.stem.rsplit("_", 1)
csv_path = tif_path.parent / f"{rest}_1.csv"
if csv_path.is_file():
if csv_path not in file_map:
file_map[csv_path] = []
file_map[csv_path].append(tif_path)
return file_map
def process_image(image_file, spot_parameters, spot_data, scale):
img = load_array_image(image_file, scale=scale)
annotate_image(img, spot_parameters, spot_data, scale)
return img
def create_crops(output_path, img, image_path, spot_parameters, array_data, scale):
base_name = image_path.stem
for index, spot_data in array_data.iterrows():
cropped_img = crop(img, spot_parameters, spot_data, scale)
new_path = output_path / f"{base_name}_{index + 1:03}.tif"
cropped_img.save(new_path)
def process(input_dir, output_dir, scale=3, wells="*", exposures="*", add_single_spots=False):
spot_parameters = retrieve_spot_parameters(input_dir, scale)
file_map = create_file_map(input_dir, wells, exposures)
output_path = Path(output_dir)
if not output_path.is_dir():
sys.exit(f"Could not find output directory: {output_dir}")
for data_file, image_files in file_map.items():
array_data = parse_file(data_file)
print(data_file)
for image_path in image_files:
img = process_image(image_path, spot_parameters, array_data, scale)
img.save(output_path / image_path.name)
if add_single_spots:
create_crops(output_path, img, image_path, spot_parameters, array_data, scale)

BIN
sensospot_images/arial.ttf

Binary file not shown.

90
sensospot_images/images.py

@ -0,0 +1,90 @@ @@ -0,0 +1,90 @@
from pathlib import Path
from collections import namedtuple
import numpy
from PIL import Image, ImageDraw, ImageFont
Point = namedtuple("Point", ["x", "y"])
Spot = namedtuple("Spot", ["found", "x", "y"])
THIS_DIR = Path(__file__).absolute().parent
FONT_PATH = THIS_DIR / "arial.ttf"
FONT = ImageFont.truetype(str(FONT_PATH), 32)
GREEN = (0, 255, 0)
RED = (255, 0, 0)
def recalculate(iterable, factor):
recalculated = [v * factor for v in iterable]
cls = type(iterable)
try:
return cls(*recalculated)
except TypeError:
return tuple(recalculated)
def convert_16bit_to_8bit(img):
array = numpy.uint8(numpy.array(img) / 256)
return Image.fromarray(array)
def convert_16bit_grey_to_color(img):
return convert_16bit_to_8bit(img).convert(mode="RGB")
def resize(img, scale=1):
return img.resize(recalculate(img.size, scale))
def load_array_image(file_path, scale=1):
img = Image.open(file_path)
colored = convert_16bit_grey_to_color(img)
return resize(colored, scale)
def get_position(data_series, actual=True):
prefix = "Pos" if actual else "Pos.Nom"
x = int(data_series[f"{prefix}.X"])
y = int(data_series[f"{prefix}.Y"])
return Point(x, y)
def get_box(center, width, height=None):
height = width if height is None else height
dx = width / 2
dy = height / 2
return (center.x - dx, center.y - dy, center.x + dx, center.y + dy)
def annotate_spot(canvas, spot_parameters, spot_data, scale=1):
found = spot_data["Spot.Found"]
center = recalculate(get_position(spot_data, found), scale)
color = GREEN if found else RED
box = get_box(center, spot_parameters.roi_x, spot_parameters.roi_y)
canvas.rectangle(box, outline=color, width=1)
box = get_box(center, spot_parameters.radius_bkg)
canvas.ellipse(box, outline=color, width=2)
box = get_box(center, spot_parameters.radius_spot)
canvas.ellipse(box, outline=color, width=1)
canvas.text(center, str(spot_data["Pos.Id"]), RED, font=FONT)
def annotate_image(array_img, spot_parameters, array_data, scale):
canvas = ImageDraw.Draw(array_img)
for index, spot_data in array_data.iterrows():
annotate_spot(canvas, spot_parameters, spot_data, scale)
def crop(array_img, spot_parameters, spot_data, scale=1):
found = spot_data["Spot.Found"]
center = recalculate(get_position(spot_data, found), scale)
box = get_box(center, spot_parameters.crop_x, spot_parameters.crop_y)
return array_img.crop(box)

54
sensospot_images/parameters.py

@ -0,0 +1,54 @@ @@ -0,0 +1,54 @@
from pathlib import Path
from collections import namedtuple
from defusedxml import ElementTree
ArrayParameters = namedtuple(
"ArrayParameters", ["size_x", "size_y", "dist_x", "dist_y"]
)
SpotParameters = namedtuple(
"SpotParameters",
["radius_spot", "radius_bkg", "roi_x", "roi_y", "crop_x", "crop_y"],
)
def _to_micro_meters(value):
as_float = float(value)
return int(as_float * 1000)
def array_parameters_from_xml(tree):
layout = tree.find("Layout")
sx = int(layout.attrib["NofSpotsX"])
sy = int(layout.attrib["NofSpotsY"])
dx = _to_micro_meters(layout.attrib["SpotDistMmX"])
dy = _to_micro_meters(layout.attrib["SpotDistMmY"])
return ArrayParameters(sx, sy, dx, dy)
def spot_parameters_from_xml(tree, array_parameters):
array = tree.find("MicroArrayAnalysis").find("Settings")
reg = tree.find("Registration").find("Settings")
rs = _to_micro_meters(array.attrib["MinSpotSizeMm"])
rb = _to_micro_meters(array.attrib["MaxSpotSizeMm"])
rx = array_parameters.dist_x
ry = array_parameters.dist_y
# ROI is strangely named in params file, it's actually the outside crop
cx = _to_micro_meters(reg.attrib["ROIMarginWidth"])
cy = _to_micro_meters(reg.attrib["ROIMarginHeight"])
return SpotParameters(rs, rb, rx, ry, cx, cy)
def get_array_parameters(params_file):
svary_file = Path(params_file).with_suffix(".svary")
with svary_file.open("r") as file_handle:
tree = ElementTree.parse(file_handle)
return array_parameters_from_xml(tree)
def get_spot_parameters(params_file, array_parameters):
svalg_file = Path(params_file).with_suffix(".svalg")
with svalg_file.open("r") as file_handle:
tree = ElementTree.parse(file_handle)
return spot_parameters_from_xml(tree, array_parameters)
Loading…
Cancel
Save