Holger Frey
4 years ago
2 changed files with 0 additions and 462 deletions
@ -1,172 +0,0 @@ |
|||||||
import numpy |
|
||||||
|
|
||||||
from .columns import ( |
|
||||||
COL_NAME_POS_ID, |
|
||||||
COL_NAME_WELL_ROW, |
|
||||||
COL_NAME_SPOT_MEAN, |
|
||||||
COL_NAME_EXPOSURE_ID, |
|
||||||
COL_NAME_WELL_COLUMN, |
|
||||||
COLUMN_NORMALIZATION, |
|
||||||
COL_NAME_EXPOSURE_TIME, |
|
||||||
COL_NAME_SPOT_OVERFLOW, |
|
||||||
COL_NAME_PARAMETERS_TIME, |
|
||||||
COL_NAME_EXPOSURE_CHANNEL, |
|
||||||
COL_NAME_PARAMETERS_CHANNEL, |
|
||||||
COL_NAME_NORMALIZED_EXPOSURE_TIME, |
|
||||||
) |
|
||||||
|
|
||||||
|
|
||||||
def _split_data_frame(data_frame, column): |
|
||||||
""" splits a data frame on unique column values """ |
|
||||||
values = data_frame[column].unique() |
|
||||||
masks = {value: (data_frame[column] == value) for value in values} |
|
||||||
return {value: data_frame[mask] for value, mask in masks.items()} |
|
||||||
|
|
||||||
|
|
||||||
def _infer_exposure_from_parameters(data_frame): |
|
||||||
"""infer the exposures from measurement parameters |
|
||||||
|
|
||||||
will raise a ValueError if the parameters contain NaNs |
|
||||||
""" |
|
||||||
df = data_frame # shorthand for cleaner code |
|
||||||
|
|
||||||
if ( |
|
||||||
df[COL_NAME_PARAMETERS_CHANNEL].hasnans |
|
||||||
or df[COL_NAME_PARAMETERS_TIME].hasnans |
|
||||||
): |
|
||||||
raise ValueError("Exposure Map: measurement parameters incomplete") |
|
||||||
|
|
||||||
df[COL_NAME_EXPOSURE_CHANNEL] = df[COL_NAME_PARAMETERS_CHANNEL] |
|
||||||
df[COL_NAME_EXPOSURE_TIME] = df[COL_NAME_PARAMETERS_TIME] |
|
||||||
return df |
|
||||||
|
|
||||||
|
|
||||||
def apply_exposure_map(data_frame, exposure_map=None): |
|
||||||
"""applies the parameters of a exposure map to the data frame |
|
||||||
|
|
||||||
exposure map: |
|
||||||
keys: must be the same as the exposure ids, |
|
||||||
values: objects with at least time and channel attributes |
|
||||||
|
|
||||||
if the exposure map is None, the values from the optionally parsed |
|
||||||
measurement parameters are used. |
|
||||||
|
|
||||||
will raise an ValueError, if the provided exposure map does not map to the |
|
||||||
exposure ids. |
|
||||||
""" |
|
||||||
|
|
||||||
if exposure_map is None: |
|
||||||
return _infer_exposure_from_parameters(data_frame) |
|
||||||
|
|
||||||
existing = set(data_frame[COL_NAME_EXPOSURE_ID].unique()) |
|
||||||
provided = set(exposure_map.keys()) |
|
||||||
if existing != provided: |
|
||||||
raise ValueError( |
|
||||||
f"Exposure Map differs from data frame: {provided} != {existing}" |
|
||||||
) |
|
||||||
|
|
||||||
data_frame[COL_NAME_EXPOSURE_CHANNEL] = numpy.nan |
|
||||||
data_frame[COL_NAME_EXPOSURE_TIME] = numpy.nan |
|
||||||
for exposure_id, exposure_info in exposure_map.items(): |
|
||||||
mask = data_frame[COL_NAME_EXPOSURE_ID] == exposure_id |
|
||||||
data_frame.loc[mask, COL_NAME_EXPOSURE_CHANNEL] = exposure_info.channel |
|
||||||
data_frame.loc[mask, COL_NAME_EXPOSURE_TIME] = exposure_info.time |
|
||||||
return data_frame |
|
||||||
|
|
||||||
|
|
||||||
def _check_overflow_limit(data_frame, column=COL_NAME_SPOT_MEAN, limit=0.5): |
|
||||||
""" add overflow info, based on column and limit """ |
|
||||||
data_frame[COL_NAME_SPOT_OVERFLOW] = data_frame[column] > limit |
|
||||||
return data_frame |
|
||||||
|
|
||||||
|
|
||||||
def reduce_overflow(data_frame, column=COL_NAME_SPOT_MEAN, limit=0.5): |
|
||||||
""" reduces the data set per channel, eliminating overflowing spots """ |
|
||||||
data_frame = _check_overflow_limit(data_frame, column, limit) |
|
||||||
|
|
||||||
split_frames = _split_data_frame(data_frame, COL_NAME_EXPOSURE_CHANNEL) |
|
||||||
|
|
||||||
return { |
|
||||||
channel_id: _reduce_overflow_in_channel(channel_frame) |
|
||||||
for channel_id, channel_frame in split_frames.items() |
|
||||||
} |
|
||||||
|
|
||||||
|
|
||||||
def _reduce_overflow_in_channel(channel_frame): |
|
||||||
""" does the heavy lifting for reduce_overflow """ |
|
||||||
|
|
||||||
split_frames = _split_data_frame(channel_frame, COL_NAME_EXPOSURE_TIME) |
|
||||||
|
|
||||||
if len(split_frames) == 1: |
|
||||||
# shortcut, if there is only one exposure in the channel |
|
||||||
return channel_frame |
|
||||||
|
|
||||||
exposure_times = sorted(split_frames.keys(), reverse=True) |
|
||||||
max_time, *rest_times = exposure_times |
|
||||||
|
|
||||||
multi_index = [COL_NAME_WELL_ROW, COL_NAME_WELL_COLUMN, COL_NAME_POS_ID] |
|
||||||
result_frame = split_frames[max_time].set_index(multi_index) |
|
||||||
|
|
||||||
for next_time in rest_times: |
|
||||||
mask = result_frame[COL_NAME_SPOT_OVERFLOW] == True # noqa: E712 |
|
||||||
next_frame = split_frames[next_time].set_index(multi_index) |
|
||||||
result_frame.loc[mask] = next_frame.loc[mask] |
|
||||||
|
|
||||||
return result_frame.reset_index() |
|
||||||
|
|
||||||
|
|
||||||
def _infer_normalization_map(split_data_frames): |
|
||||||
""" extract a time normalization map from split data frames """ |
|
||||||
return { |
|
||||||
key: frame[COL_NAME_EXPOSURE_TIME].max() |
|
||||||
for key, frame in split_data_frames.items() |
|
||||||
} |
|
||||||
|
|
||||||
|
|
||||||
def normalize_exposure_time(split_data_frames): |
|
||||||
"""add time normalized values to the split data frames |
|
||||||
|
|
||||||
The max exposure time per channel is used for normalization. |
|
||||||
""" |
|
||||||
normalization_map = _infer_normalization_map(split_data_frames) |
|
||||||
return { |
|
||||||
key: normalize_channel(frame, normalization_map[key]) |
|
||||||
for key, frame in split_data_frames.items() |
|
||||||
} |
|
||||||
|
|
||||||
|
|
||||||
def normalize_channel(channel_frame, normalized_time): |
|
||||||
""" add time normalized values to a channel data frames """ |
|
||||||
channel_frame = channel_frame.copy() |
|
||||||
channel_frame[COL_NAME_NORMALIZED_EXPOSURE_TIME] = normalized_time |
|
||||||
|
|
||||||
for original_col, normalized_col in COLUMN_NORMALIZATION.items(): |
|
||||||
channel_frame[normalized_col] = ( |
|
||||||
channel_frame[original_col] / channel_frame[COL_NAME_EXPOSURE_TIME] |
|
||||||
) * channel_frame[COL_NAME_NORMALIZED_EXPOSURE_TIME] |
|
||||||
|
|
||||||
return channel_frame |
|
||||||
|
|
||||||
|
|
||||||
def split_channels( |
|
||||||
data_frame, |
|
||||||
exposure_map=None, |
|
||||||
overflow_column=COL_NAME_SPOT_MEAN, |
|
||||||
overflow_limit=0.5, |
|
||||||
): |
|
||||||
"""augment normalize the measurement exposures |
|
||||||
|
|
||||||
exposure map: |
|
||||||
keys: must be the same as the exposure ids, |
|
||||||
values: objects with at least time and channel attributes |
|
||||||
if the exposure map is None, the values from the optionally parsed |
|
||||||
measurement parameters are used. |
|
||||||
|
|
||||||
The max exposure time per channel is used for normalization. |
|
||||||
""" |
|
||||||
|
|
||||||
exposure_data_frame = apply_exposure_map(data_frame, exposure_map) |
|
||||||
split_data_frames = reduce_overflow( |
|
||||||
exposure_data_frame, overflow_column, overflow_limit |
|
||||||
) |
|
||||||
return normalize_exposure_time(split_data_frames) |
|
@ -1,290 +0,0 @@ |
|||||||
from collections import namedtuple |
|
||||||
|
|
||||||
import pandas |
|
||||||
import pytest |
|
||||||
|
|
||||||
from .conftest import EXAMPLE_DIR_WO_PARAMS, EXAMPLE_DIR_WITH_PARAMS |
|
||||||
|
|
||||||
ExposureSetting = namedtuple("ExposureSetting", ["channel", "time"]) |
|
||||||
|
|
||||||
|
|
||||||
def test_split_data_frame(example_dir): |
|
||||||
from sensospot_data.parser import process_folder |
|
||||||
from sensospot_data.normalisation import _split_data_frame |
|
||||||
|
|
||||||
data_frame = process_folder(example_dir / EXAMPLE_DIR_WITH_PARAMS) |
|
||||||
|
|
||||||
result = _split_data_frame(data_frame, "Well.Row") |
|
||||||
|
|
||||||
assert set(result.keys()) == set("ABC") |
|
||||||
for key, value_df in result.items(): |
|
||||||
assert set(value_df["Well.Row"].unique()) == {key} |
|
||||||
|
|
||||||
|
|
||||||
def test_infer_exposure_from_parameters(example_dir): |
|
||||||
from sensospot_data.parser import process_folder |
|
||||||
from sensospot_data.normalisation import _infer_exposure_from_parameters |
|
||||||
|
|
||||||
data_frame = process_folder(example_dir / EXAMPLE_DIR_WITH_PARAMS) |
|
||||||
result = _infer_exposure_from_parameters(data_frame) |
|
||||||
|
|
||||||
assert all(result["Exposure.Channel"] == result["Parameters.Channel"]) |
|
||||||
assert all(result["Exposure.Time"] == result["Parameters.Time"]) |
|
||||||
|
|
||||||
|
|
||||||
def test_infer_exposure_from_parameters_raises_error(example_dir): |
|
||||||
from sensospot_data.parser import process_folder |
|
||||||
from sensospot_data.normalisation import _infer_exposure_from_parameters |
|
||||||
|
|
||||||
data_frame = process_folder(example_dir / EXAMPLE_DIR_WO_PARAMS) |
|
||||||
|
|
||||||
with pytest.raises(ValueError) as excinfo: |
|
||||||
_infer_exposure_from_parameters(data_frame) |
|
||||||
|
|
||||||
assert str(excinfo.value).startswith("Exposure Map: measurement") |
|
||||||
|
|
||||||
|
|
||||||
def test_apply_exposure_map(example_dir): |
|
||||||
from sensospot_data.parser import process_folder |
|
||||||
from sensospot_data.normalisation import apply_exposure_map |
|
||||||
|
|
||||||
exposure_map = { |
|
||||||
1: ExposureSetting("Cy3", 100), |
|
||||||
2: ExposureSetting("Cy5", 15), |
|
||||||
3: ExposureSetting("Cy5", 150), |
|
||||||
} |
|
||||||
|
|
||||||
data_frame = process_folder(example_dir / EXAMPLE_DIR_WITH_PARAMS) |
|
||||||
result = apply_exposure_map(data_frame, exposure_map) |
|
||||||
|
|
||||||
for key, value in exposure_map.items(): |
|
||||||
mask = result["Exposure.Id"] == key |
|
||||||
partial = result.loc[mask] |
|
||||||
assert set(partial["Exposure.Channel"].unique()) == {value.channel} |
|
||||||
assert set(partial["Exposure.Time"].unique()) == {value.time} |
|
||||||
|
|
||||||
|
|
||||||
def test_apply_exposure_map_raises_error(example_dir): |
|
||||||
from sensospot_data.parser import process_folder |
|
||||||
from sensospot_data.normalisation import apply_exposure_map |
|
||||||
|
|
||||||
exposure_map = { |
|
||||||
1: ExposureSetting("Cy3", 100), |
|
||||||
2: ExposureSetting("Cy5", 15), |
|
||||||
"X": ExposureSetting("Cy5", 150), |
|
||||||
} |
|
||||||
|
|
||||||
data_frame = process_folder(example_dir / EXAMPLE_DIR_WITH_PARAMS) |
|
||||||
|
|
||||||
with pytest.raises(ValueError) as excinfo: |
|
||||||
apply_exposure_map(data_frame, exposure_map) |
|
||||||
|
|
||||||
assert str(excinfo.value).startswith("Exposure Map differs") |
|
||||||
|
|
||||||
|
|
||||||
def test_apply_exposure_map_from_parameters(example_dir): |
|
||||||
from sensospot_data.parser import process_folder |
|
||||||
from sensospot_data.normalisation import apply_exposure_map |
|
||||||
|
|
||||||
data_frame = process_folder(example_dir / EXAMPLE_DIR_WITH_PARAMS) |
|
||||||
result = apply_exposure_map(data_frame, None) |
|
||||||
|
|
||||||
assert all(result["Exposure.Channel"] == result["Parameters.Channel"]) |
|
||||||
assert all(result["Exposure.Time"] == result["Parameters.Time"]) |
|
||||||
|
|
||||||
|
|
||||||
def test_apply_exposure_map_from_parameters_raises_error(example_dir): |
|
||||||
from sensospot_data.parser import process_folder |
|
||||||
from sensospot_data.normalisation import apply_exposure_map |
|
||||||
|
|
||||||
data_frame = process_folder(example_dir / EXAMPLE_DIR_WO_PARAMS) |
|
||||||
|
|
||||||
with pytest.raises(ValueError) as excinfo: |
|
||||||
apply_exposure_map(data_frame, None) |
|
||||||
|
|
||||||
assert str(excinfo.value).startswith("Exposure Map: measurement") |
|
||||||
|
|
||||||
|
|
||||||
def test_check_overflow_limit_defaults(): |
|
||||||
from sensospot_data.normalisation import _check_overflow_limit |
|
||||||
|
|
||||||
data_frame = pandas.DataFrame(data={"Spot.Mean": [0.1, 0.5, 0.6]}) |
|
||||||
|
|
||||||
result = _check_overflow_limit(data_frame) |
|
||||||
|
|
||||||
assert list(result["Spot.Overflow"]) == [False, False, True] |
|
||||||
|
|
||||||
|
|
||||||
def test_check_overflow_limit_custom_limit(): |
|
||||||
from sensospot_data.normalisation import _check_overflow_limit |
|
||||||
|
|
||||||
data_frame = pandas.DataFrame(data={"Spot.Sat": [4, 2, 3, 4]}) |
|
||||||
|
|
||||||
result = _check_overflow_limit(data_frame, "Spot.Sat", 2) |
|
||||||
|
|
||||||
assert list(result["Spot.Overflow"]) == [True, False, True, True] |
|
||||||
|
|
||||||
|
|
||||||
def test_reduce_overflow_in_channel(normalization_data_frame): |
|
||||||
from sensospot_data.normalisation import ( |
|
||||||
_check_overflow_limit, |
|
||||||
_reduce_overflow_in_channel, |
|
||||||
) |
|
||||||
|
|
||||||
data_frame = _check_overflow_limit( |
|
||||||
normalization_data_frame, "Saturation", 1 |
|
||||||
) |
|
||||||
result = _reduce_overflow_in_channel(data_frame) |
|
||||||
|
|
||||||
sorted_results = result.sort_values( |
|
||||||
by=["Well.Row", "Well.Column", "Pos.Id"] |
|
||||||
) |
|
||||||
|
|
||||||
assert list(sorted_results["Value"]) == [ |
|
||||||
1, |
|
||||||
2, |
|
||||||
3, |
|
||||||
1, |
|
||||||
10, |
|
||||||
10, |
|
||||||
10, |
|
||||||
10, |
|
||||||
100, |
|
||||||
100, |
|
||||||
100, |
|
||||||
100, |
|
||||||
] |
|
||||||
|
|
||||||
|
|
||||||
def test_reduce_overflow_in_channel_shortcut(normalization_data_frame): |
|
||||||
from sensospot_data.normalisation import ( |
|
||||||
_check_overflow_limit, |
|
||||||
_reduce_overflow_in_channel, |
|
||||||
) |
|
||||||
|
|
||||||
normalization_data_frame["Exposure.Time"] = 1 |
|
||||||
|
|
||||||
data_frame = _check_overflow_limit( |
|
||||||
normalization_data_frame, "Saturation", 1 |
|
||||||
) |
|
||||||
result = _reduce_overflow_in_channel(data_frame) |
|
||||||
|
|
||||||
assert result is data_frame |
|
||||||
|
|
||||||
|
|
||||||
def test_reduce_overflow(normalization_data_frame): |
|
||||||
from sensospot_data.normalisation import reduce_overflow |
|
||||||
|
|
||||||
result = reduce_overflow(normalization_data_frame, "Saturation", 1) |
|
||||||
|
|
||||||
assert "Cy5" in result |
|
||||||
|
|
||||||
sorted_results = result["Cy5"].sort_values( |
|
||||||
by=["Well.Row", "Well.Column", "Pos.Id"] |
|
||||||
) |
|
||||||
|
|
||||||
assert list(sorted_results["Value"]) == [ |
|
||||||
1, |
|
||||||
2, |
|
||||||
3, |
|
||||||
1, |
|
||||||
10, |
|
||||||
10, |
|
||||||
10, |
|
||||||
10, |
|
||||||
100, |
|
||||||
100, |
|
||||||
100, |
|
||||||
100, |
|
||||||
] |
|
||||||
|
|
||||||
|
|
||||||
def test_infer_normalization_map(normalization_data_frame): |
|
||||||
from sensospot_data.normalisation import ( |
|
||||||
_split_data_frame, |
|
||||||
_infer_normalization_map, |
|
||||||
) |
|
||||||
|
|
||||||
normalization_data_frame.loc[5, "Exposure.Channel"] = "Cy3" |
|
||||||
split_frames = _split_data_frame( |
|
||||||
normalization_data_frame, "Exposure.Channel" |
|
||||||
) |
|
||||||
|
|
||||||
result = _infer_normalization_map(split_frames) |
|
||||||
|
|
||||||
assert result == {"Cy3": 25, "Cy5": 50} |
|
||||||
|
|
||||||
|
|
||||||
def test_normalize_channel(normalization_data_frame): |
|
||||||
from sensospot_data.columns import COLUMN_NORMALIZATION |
|
||||||
from sensospot_data.normalisation import reduce_overflow, normalize_channel |
|
||||||
|
|
||||||
reduced = reduce_overflow(normalization_data_frame, "Saturation", 1) |
|
||||||
result = normalize_channel(reduced["Cy5"], 50) |
|
||||||
|
|
||||||
sorted_results = result.sort_values( |
|
||||||
by=["Well.Row", "Well.Column", "Pos.Id"] |
|
||||||
) |
|
||||||
expected_values = [2, 8, 30, 2, 20, 20, 20, 20, 200, 200, 200, 200] |
|
||||||
|
|
||||||
for normalized_col in COLUMN_NORMALIZATION.values(): |
|
||||||
list(sorted_results[normalized_col]) == expected_values |
|
||||||
|
|
||||||
|
|
||||||
def test_normalize_exposure_time(normalization_data_frame): |
|
||||||
from sensospot_data.normalisation import ( |
|
||||||
reduce_overflow, |
|
||||||
normalize_exposure_time, |
|
||||||
) |
|
||||||
|
|
||||||
reduced = reduce_overflow(normalization_data_frame, "Saturation", 1) |
|
||||||
result = normalize_exposure_time(reduced) |
|
||||||
|
|
||||||
assert "Cy5" in result |
|
||||||
|
|
||||||
sorted_results = result["Cy5"].sort_values( |
|
||||||
by=["Well.Row", "Well.Column", "Pos.Id"] |
|
||||||
) |
|
||||||
expected_values = [1, 4, 15, 1, 10, 10, 10, 10, 100, 100, 100, 100] |
|
||||||
|
|
||||||
assert list(sorted_results["Normalized.Spot.Mean"]) == expected_values |
|
||||||
|
|
||||||
|
|
||||||
def test_normalize_exposure_time_infered_map(normalization_data_frame): |
|
||||||
from sensospot_data.normalisation import ( |
|
||||||
reduce_overflow, |
|
||||||
normalize_exposure_time, |
|
||||||
) |
|
||||||
|
|
||||||
reduced = reduce_overflow(normalization_data_frame, "Saturation", 1) |
|
||||||
result = normalize_exposure_time(reduced) |
|
||||||
|
|
||||||
assert "Cy5" in result |
|
||||||
|
|
||||||
sorted_results = result["Cy5"].sort_values( |
|
||||||
by=["Well.Row", "Well.Column", "Pos.Id"] |
|
||||||
) |
|
||||||
expected_values = [1, 4, 15, 1, 10, 10, 10, 10, 100, 100, 100, 100] |
|
||||||
|
|
||||||
assert list(sorted_results["Normalized.Spot.Mean"]) == expected_values |
|
||||||
|
|
||||||
|
|
||||||
def test_normalize_measurement(example_dir): |
|
||||||
from sensospot_data.parser import process_folder |
|
||||||
from sensospot_data.normalisation import split_channels |
|
||||||
|
|
||||||
sub_dir = example_dir / EXAMPLE_DIR_WITH_PARAMS |
|
||||||
data_frame = process_folder(sub_dir) |
|
||||||
|
|
||||||
exposure_map = { |
|
||||||
1: ExposureSetting("Cy3", 100), |
|
||||||
2: ExposureSetting("Cy5", 15), |
|
||||||
3: ExposureSetting("Cy5", 150), |
|
||||||
} |
|
||||||
|
|
||||||
result = split_channels(data_frame, exposure_map) |
|
||||||
cy3_df, cy5_df = result["Cy3"], result["Cy5"] |
|
||||||
|
|
||||||
assert set(result.keys()) == {"Cy3", "Cy5"} |
|
||||||
assert cy3_df["Normalized.Exposure.Time"].unique() == 100 |
|
||||||
assert cy5_df["Normalized.Exposure.Time"].unique() == 150 |
|
Loading…
Reference in new issue