Browse Source

added checks for exposure map validity

xmlparsing
Holger Frey 4 years ago
parent
commit
9eb2396b82
  1. 70
      sensospot_data/utils.py
  2. 97
      tests/test_utils.py

70
sensospot_data/utils.py

@ -1,4 +1,6 @@
import numpy from collections.abc import Mapping, Sequence
import pandas
from .columns import ( from .columns import (
META_DATA_EXPOSURE_ID, META_DATA_EXPOSURE_ID,
@ -16,6 +18,47 @@ def split_data_frame(data_frame, column):
return {value: data_frame[mask] for value, mask in masks.items()} return {value: data_frame[mask] for value, mask in masks.items()}
def _is_list_or_tuple(something):
""" returns true if something is a list or tuple """
if isinstance(something, Sequence):
return not isinstance(something, str)
return False
def _is_numerical(something):
""" returns true if something is an int or float """
return isinstance(something, int) or isinstance(something, float)
def _check_valid_exposure_map_entry(entry):
""" raises a ValueError, if an exposure map entry is not suitable """
if not _is_list_or_tuple(entry):
raise ValueError("Eposure Map: entries must be tuples or lists")
if not len(entry) == 2:
raise ValueError("Eposure Map: entries must consist of two items")
if not _is_numerical(entry[1]):
raise ValueError("Exposure Map: second entry must be numerical")
def _check_exposure_map(data_frame, exposure_map):
"""checks if an exposure maps fits the requirements
Will raise an ValueError if requirements are not met
"""
if not isinstance(exposure_map, Mapping):
raise ValueError("Exposure Map: map must be a dict")
exposure_ids_in_df = set(data_frame[META_DATA_EXPOSURE_ID].unique())
exposure_ids_in_map = set(exposure_map.keys())
if exposure_ids_in_df != exposure_ids_in_map:
msg = (
f"Exposure Ids {exposure_ids_in_df} don't match "
f"provided map {exposure_ids_in_map}"
)
raise ValueError(msg)
for entry in exposure_map.values():
_check_valid_exposure_map_entry(entry)
def _set_exposure_data_from_parameters(data_frame): def _set_exposure_data_from_parameters(data_frame):
"""infer the exposures from measurement parameters """infer the exposures from measurement parameters
@ -51,17 +94,16 @@ def apply_exposure_map(data_frame, exposure_map=None):
if exposure_map is None: if exposure_map is None:
return _set_exposure_data_from_parameters(data_frame) return _set_exposure_data_from_parameters(data_frame)
existing = set(data_frame[META_DATA_EXPOSURE_ID].unique()) _check_exposure_map(data_frame, exposure_map)
provided = set(exposure_map.keys())
if existing != provided:
raise ValueError(
f"Exposure Map differs from data frame: {provided} != {existing}"
)
data_frame[SETTINGS_EXPOSURE_CHANNEL] = numpy.nan exposure_df = pandas.DataFrame.from_dict(
data_frame[SETTINGS_EXPOSURE_TIME] = numpy.nan exposure_map,
for exposure_id, exposure_info in exposure_map.items(): orient="index",
mask = data_frame[META_DATA_EXPOSURE_ID] == exposure_id columns=[SETTINGS_EXPOSURE_CHANNEL, SETTINGS_EXPOSURE_TIME],
data_frame.loc[mask, SETTINGS_EXPOSURE_CHANNEL] = exposure_info.channel )
data_frame.loc[mask, SETTINGS_EXPOSURE_TIME] = exposure_info.time return data_frame.merge(
return data_frame exposure_df,
how="left",
left_on=META_DATA_EXPOSURE_ID,
right_index=True,
)

97
tests/test_utils.py

@ -15,6 +15,99 @@ def test_split_data_frame(data_frame_with_params):
assert set(value_df["Well.Row"].unique()) == {key} assert set(value_df["Well.Row"].unique()) == {key}
@pytest.mark.parametrize(
"value,expected",
[
[[1, 2], True],
[(1, 2), True],
[{1, 2}, False],
[{1: 2}, False],
["1, 2", False],
[None, False],
],
)
def test_is_list_or_tuple(value, expected):
from sensospot_data.utils import _is_list_or_tuple
result = _is_list_or_tuple(value)
assert result is expected
@pytest.mark.parametrize(
"value,expected",
[
[1, True],
[1.2, True],
[{1, 2}, False],
[{1: 2}, False],
["1", False],
[None, False],
],
)
def test_is_numerical(value, expected):
from sensospot_data.utils import _is_numerical
result = _is_numerical(value)
assert result is expected
def test_check_valid_exposure_map_entry_ok():
from sensospot_data.utils import _check_valid_exposure_map_entry
result = _check_valid_exposure_map_entry((2, 1))
assert result is None
@pytest.mark.parametrize(
"value", [[], [1], (1, 2, 3), {"a": 1, "b": 2}, ("A", "B")]
)
def test_check_valid_exposure_map_entry_raises_error(value):
from sensospot_data.utils import _check_valid_exposure_map_entry
with pytest.raises(ValueError):
_check_valid_exposure_map_entry(value)
def test_check_exposure_map_ok(exposure_df):
from sensospot_data.utils import _check_exposure_map
exposure_map = {1: ("A", 10), 2: ("B", 20), 3: ("C", 30)}
result = _check_exposure_map(exposure_df, exposure_map)
assert result is None
def test_check_exposure_map_wrong_type(exposure_df):
from sensospot_data.utils import _check_exposure_map
exposure_map = []
with pytest.raises(ValueError):
_check_exposure_map(exposure_df, exposure_map)
def test_check_exposure_map_wrong_ids(exposure_df):
from sensospot_data.utils import _check_exposure_map
exposure_map = {1: ("A", 10), 2: ("B", 20), 4: ("D", 40)}
with pytest.raises(ValueError):
_check_exposure_map(exposure_df, exposure_map)
def test_check_exposure_map_invalid_entries(exposure_df):
from sensospot_data.utils import _check_exposure_map
exposure_map = {1: ("A", 10), 2: ("B", 20), 3: "ERROR"}
with pytest.raises(ValueError):
_check_exposure_map(exposure_df, exposure_map)
def test_infer_exposure_from_parameters(data_frame_with_params): def test_infer_exposure_from_parameters(data_frame_with_params):
from sensospot_data.utils import _set_exposure_data_from_parameters from sensospot_data.utils import _set_exposure_data_from_parameters
@ -62,11 +155,9 @@ def test_apply_exposure_map_raises_error(data_frame_with_params):
"X": ExposureSetting("Cy5", 150), "X": ExposureSetting("Cy5", 150),
} }
with pytest.raises(ValueError) as excinfo: with pytest.raises(ValueError):
apply_exposure_map(data_frame_with_params, exposure_map) apply_exposure_map(data_frame_with_params, exposure_map)
assert str(excinfo.value).startswith("Exposure Map differs")
def test_apply_exposure_map_from_parameters(data_frame_with_params): def test_apply_exposure_map_from_parameters(data_frame_with_params):
from sensospot_data.utils import apply_exposure_map from sensospot_data.utils import apply_exposure_map

Loading…
Cancel
Save