Parsing the numerical output from Sensovation SensoSpot image analysis.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
Holger Frey d6561c5ca1 renamed parameters in create_xdr 4 years ago
example_data added test data for raising errors 4 years ago
sensospot_data renamed parameters in create_xdr 4 years ago
tests removed module 'normalisation' in favor of 'dynamic_range' 4 years ago
.gitignore some errors fixed in production 4 years ago
.pre-commit-config.yaml added measurement normalization 4 years ago
CHANGES.md api changes 4 years ago
CONTRIBUTING.md import of project template 5 years ago
LICENSE import of project template 5 years ago
Makefile globally randomizing test order on coverage 4 years ago
README.md api changes 4 years ago
pyproject.toml added pytest-random-order for testing 4 years ago
tox.ini import of project template 5 years ago

README.md

Sensospot Data Parser

Parsing the numerical output from Sensovation Sensospot image analysis.

Example:


    import sensospot_data

    # read the raw data of a folder
    raw_data = sensospot_data.process_folder(<path to results directory>)

    # split the measurement according to channels
    channels = sensospot_data.split_channels(raw_data [, optional_exposure_map])

    # normalize one channel to a specific exposure time
    cy5_normalized = sensospot_data.normalize_channel(channels["cy5"], normalized_time=25)

Development

To install the development version of Sensovation Data Parser:

git clone https://git.cpi.imtek.uni-freiburg.de/holgi/sensospot_data.git

# create a virtual environment and install all required dev dependencies
cd sensospot_data
make devenv

To run the tests, use make tests (failing on first error) or make coverage for a complete report.