Browse Source

added `to_dict()` method to the `Regression` result class

this makes it easier to construct data frames out of a list of regression results.
main
Holger Frey 2 years ago
parent
commit
e3a141294d
  1. 1
      README.md
  2. 7
      linear_regression.py

1
README.md

@ -11,6 +11,7 @@ counterpart. @@ -11,6 +11,7 @@ counterpart.
```python
from linear_regression import linear_regression
df = pd.DataFrame({"temperature":[...], "signal":[...]})
regression = linear_regression(df, x="temperature", y="signal")

7
linear_regression.py

@ -1,11 +1,11 @@ @@ -1,11 +1,11 @@
import dataclasses
import pandas as pd
import pytest
from dataclasses import dataclass
from sklearn import linear_model
@dataclass
@dataclasses.dataclass
class Regression:
intercept: float
coefficient: float
@ -28,6 +28,9 @@ class Regression: @@ -28,6 +28,9 @@ class Regression:
msg = "predict() expects 1 argument, got 0"
raise TypeError(msg)
def to_dict(self):
return dataclasses.asdict(self)
def linear_regression(data: pd.DataFrame, *, x: str, y: str) -> Regression:
"""calculates a linear regression for two columns of a DataFrame"""

Loading…
Cancel
Save