Holger Frey
4 years ago
6 changed files with 329 additions and 300 deletions
@ -0,0 +1,99 @@ |
|||||||
|
from pandas.api.types import is_numeric_dtype |
||||||
|
|
||||||
|
from .utils import split_data_frame |
||||||
|
from .columns import ( |
||||||
|
RAW_DATA_POS_ID, |
||||||
|
CALC_SPOT_OVERFLOW, |
||||||
|
META_DATA_WELL_ROW, |
||||||
|
RAW_DATA_SPOT_MEAN, |
||||||
|
META_DATA_WELL_COLUMN, |
||||||
|
SETTINGS_EXPOSURE_TIME, |
||||||
|
SETTINGS_EXPOSURE_CHANNEL, |
||||||
|
RAW_DATA_NORMALIZATION_MAP, |
||||||
|
SETTINGS_NORMALIZED_EXPOSURE_TIME, |
||||||
|
) |
||||||
|
|
||||||
|
PROBE_MULTI_INDEX = [ |
||||||
|
META_DATA_WELL_ROW, |
||||||
|
META_DATA_WELL_COLUMN, |
||||||
|
RAW_DATA_POS_ID, |
||||||
|
] |
||||||
|
|
||||||
|
|
||||||
|
def _check_if_xdr_ready(data_frame): |
||||||
|
""" check if a data frame meets the constraints for xdr """ |
||||||
|
required_columns = {SETTINGS_EXPOSURE_CHANNEL, SETTINGS_EXPOSURE_TIME} |
||||||
|
if not required_columns.issubset(data_frame.columns): |
||||||
|
raise ValueError("XDR: Apply an exposure map first") |
||||||
|
if len(data_frame[SETTINGS_EXPOSURE_CHANNEL].unique()) != 1: |
||||||
|
raise ValueError("XDR: Mixed Exposure Channels") |
||||||
|
if not is_numeric_dtype(data_frame[SETTINGS_EXPOSURE_TIME]): |
||||||
|
raise ValueError("XDR: Exposure time is not numerical") |
||||||
|
if data_frame[SETTINGS_EXPOSURE_TIME].hasnans: |
||||||
|
raise ValueError("XDR: Exposure time contains NaNs") |
||||||
|
|
||||||
|
|
||||||
|
def _calc_overflow_info(data_frame, column=RAW_DATA_SPOT_MEAN, limit=0.5): |
||||||
|
""" add overflow info, based on column and limit """ |
||||||
|
data_frame[CALC_SPOT_OVERFLOW] = data_frame[column] > limit |
||||||
|
return data_frame |
||||||
|
|
||||||
|
|
||||||
|
def _reduce_overflow(data_frame): |
||||||
|
""" the heavy lifting for creating an extended dynamic range """ |
||||||
|
|
||||||
|
split_frames = split_data_frame(data_frame, SETTINGS_EXPOSURE_TIME) |
||||||
|
|
||||||
|
# get the exposure times, longest first |
||||||
|
exposure_times = sorted(split_frames.keys(), reverse=True) |
||||||
|
max_time, *rest_times = exposure_times |
||||||
|
|
||||||
|
result_frame = split_frames[max_time].set_index(PROBE_MULTI_INDEX) |
||||||
|
|
||||||
|
for next_time in rest_times: |
||||||
|
mask = result_frame[CALC_SPOT_OVERFLOW] == True # noqa: E712 |
||||||
|
next_frame = split_frames[next_time].set_index(PROBE_MULTI_INDEX) |
||||||
|
result_frame.loc[mask] = next_frame.loc[mask] |
||||||
|
|
||||||
|
return result_frame.reset_index() |
||||||
|
|
||||||
|
|
||||||
|
def blend(data_frame, column=RAW_DATA_SPOT_MEAN, limit=0.5): |
||||||
|
""" creates an extended dynamic range, eliminating overflowing spots """ |
||||||
|
_check_if_xdr_ready(data_frame) |
||||||
|
data_frame = _calc_overflow_info(data_frame, column, limit) |
||||||
|
return _reduce_overflow(data_frame) |
||||||
|
|
||||||
|
|
||||||
|
def normalize_values(data_frame, normalized_time=None): |
||||||
|
"""add exposure time normalized values to a data frame |
||||||
|
|
||||||
|
will use the maximum exposure time, if none is provided |
||||||
|
""" |
||||||
|
if normalized_time is None: |
||||||
|
normalized_time = data_frame[SETTINGS_EXPOSURE_TIME].max() |
||||||
|
print(normalized_time) |
||||||
|
|
||||||
|
data_frame[SETTINGS_NORMALIZED_EXPOSURE_TIME] = normalized_time |
||||||
|
|
||||||
|
for original_col, normalized_col in RAW_DATA_NORMALIZATION_MAP.items(): |
||||||
|
data_frame[normalized_col] = ( |
||||||
|
data_frame[original_col] / data_frame[SETTINGS_EXPOSURE_TIME] |
||||||
|
) * data_frame[SETTINGS_NORMALIZED_EXPOSURE_TIME] |
||||||
|
|
||||||
|
return data_frame |
||||||
|
|
||||||
|
|
||||||
|
def create_xdr( |
||||||
|
data_frame, |
||||||
|
normalized_time=None, |
||||||
|
overflow_column=RAW_DATA_SPOT_MEAN, |
||||||
|
overflow_limit=0.5, |
||||||
|
): |
||||||
|
"""normalize measurement exposures |
||||||
|
|
||||||
|
normalized_time: |
||||||
|
if it is None, the max exposure time is used for normalization. |
||||||
|
""" |
||||||
|
data_frame = blend(data_frame, overflow_column, overflow_limit) |
||||||
|
return normalize_values(data_frame, normalized_time) |
@ -1,116 +0,0 @@ |
|||||||
from .columns import ( |
|
||||||
RAW_DATA_POS_ID, |
|
||||||
CALC_SPOT_OVERFLOW, |
|
||||||
META_DATA_WELL_ROW, |
|
||||||
RAW_DATA_SPOT_MEAN, |
|
||||||
META_DATA_WELL_COLUMN, |
|
||||||
SETTINGS_EXPOSURE_TIME, |
|
||||||
SETTINGS_EXPOSURE_CHANNEL, |
|
||||||
RAW_DATA_NORMALIZATION_MAP, |
|
||||||
SETTINGS_NORMALIZED_EXPOSURE_TIME, |
|
||||||
) |
|
||||||
|
|
||||||
PROBE_MULTI_INDEX = [ |
|
||||||
META_DATA_WELL_ROW, |
|
||||||
META_DATA_WELL_COLUMN, |
|
||||||
RAW_DATA_POS_ID, |
|
||||||
] |
|
||||||
|
|
||||||
from .utils import split_data_frame, apply_exposure_map |
|
||||||
|
|
||||||
|
|
||||||
def _check_overflow_limit(data_frame, column=RAW_DATA_SPOT_MEAN, limit=0.5): |
|
||||||
""" add overflow info, based on column and limit """ |
|
||||||
data_frame[CALC_SPOT_OVERFLOW] = data_frame[column] > limit |
|
||||||
return data_frame |
|
||||||
|
|
||||||
|
|
||||||
def reduce_overflow(data_frame, column=RAW_DATA_SPOT_MEAN, limit=0.5): |
|
||||||
""" reduces the data set per channel, eliminating overflowing spots """ |
|
||||||
data_frame = _check_overflow_limit(data_frame, column, limit) |
|
||||||
|
|
||||||
split_frames = split_data_frame(data_frame, SETTINGS_EXPOSURE_CHANNEL) |
|
||||||
|
|
||||||
return { |
|
||||||
channel_id: _reduce_overflow_in_channel(channel_frame) |
|
||||||
for channel_id, channel_frame in split_frames.items() |
|
||||||
} |
|
||||||
|
|
||||||
|
|
||||||
def _reduce_overflow_in_channel(channel_frame): |
|
||||||
""" does the heavy lifting for reduce_overflow """ |
|
||||||
|
|
||||||
split_frames = split_data_frame(channel_frame, SETTINGS_EXPOSURE_TIME) |
|
||||||
|
|
||||||
if len(split_frames) == 1: |
|
||||||
# shortcut, if there is only one exposure in the channel |
|
||||||
return channel_frame |
|
||||||
|
|
||||||
exposure_times = sorted(split_frames.keys(), reverse=True) |
|
||||||
max_time, *rest_times = exposure_times |
|
||||||
|
|
||||||
result_frame = split_frames[max_time].set_index(PROBE_MULTI_INDEX) |
|
||||||
|
|
||||||
for next_time in rest_times: |
|
||||||
mask = result_frame[CALC_SPOT_OVERFLOW] == True # noqa: E712 |
|
||||||
next_frame = split_frames[next_time].set_index(PROBE_MULTI_INDEX) |
|
||||||
result_frame.loc[mask] = next_frame.loc[mask] |
|
||||||
|
|
||||||
return result_frame.reset_index() |
|
||||||
|
|
||||||
|
|
||||||
def _infer_normalization_map(split_data_frames): |
|
||||||
""" extract a time normalization map from split data frames """ |
|
||||||
return { |
|
||||||
key: frame[SETTINGS_EXPOSURE_TIME].max() |
|
||||||
for key, frame in split_data_frames.items() |
|
||||||
} |
|
||||||
|
|
||||||
|
|
||||||
def normalize_exposure_time(split_data_frames): |
|
||||||
"""add time normalized values to the split data frames |
|
||||||
|
|
||||||
The max exposure time per channel is used for normalization. |
|
||||||
""" |
|
||||||
normalization_map = _infer_normalization_map(split_data_frames) |
|
||||||
return { |
|
||||||
key: normalize_channel(frame, normalization_map[key]) |
|
||||||
for key, frame in split_data_frames.items() |
|
||||||
} |
|
||||||
|
|
||||||
|
|
||||||
def normalize_channel(channel_frame, normalized_time): |
|
||||||
""" add time normalized values to a channel data frames """ |
|
||||||
channel_frame = channel_frame.copy() |
|
||||||
channel_frame[SETTINGS_NORMALIZED_EXPOSURE_TIME] = normalized_time |
|
||||||
|
|
||||||
for original_col, normalized_col in RAW_DATA_NORMALIZATION_MAP.items(): |
|
||||||
channel_frame[normalized_col] = ( |
|
||||||
channel_frame[original_col] / channel_frame[SETTINGS_EXPOSURE_TIME] |
|
||||||
) * channel_frame[SETTINGS_NORMALIZED_EXPOSURE_TIME] |
|
||||||
|
|
||||||
return channel_frame |
|
||||||
|
|
||||||
|
|
||||||
def split_channels( |
|
||||||
data_frame, |
|
||||||
exposure_map=None, |
|
||||||
overflow_column=RAW_DATA_SPOT_MEAN, |
|
||||||
overflow_limit=0.5, |
|
||||||
): |
|
||||||
"""augment normalize the measurement exposures |
|
||||||
|
|
||||||
exposure map: |
|
||||||
keys: must be the same as the exposure ids, |
|
||||||
values: objects with at least time and channel attributes |
|
||||||
if the exposure map is None, the values from the optionally parsed |
|
||||||
measurement parameters are used. |
|
||||||
|
|
||||||
The max exposure time per channel is used for normalization. |
|
||||||
""" |
|
||||||
|
|
||||||
exposure_data_frame = apply_exposure_map(data_frame, exposure_map) |
|
||||||
split_data_frames = reduce_overflow( |
|
||||||
exposure_data_frame, overflow_column, overflow_limit |
|
||||||
) |
|
||||||
return normalize_exposure_time(split_data_frames) |
|
@ -0,0 +1,226 @@ |
|||||||
|
import numpy |
||||||
|
import pandas |
||||||
|
import pytest |
||||||
|
|
||||||
|
|
||||||
|
def test_check_if_xdr_ready_ok(exposure_df): |
||||||
|
from sensospot_data.columns import ( |
||||||
|
SETTINGS_EXPOSURE_TIME, |
||||||
|
SETTINGS_EXPOSURE_CHANNEL, |
||||||
|
) |
||||||
|
from sensospot_data.dynamic_range import _check_if_xdr_ready |
||||||
|
|
||||||
|
exposure_df[SETTINGS_EXPOSURE_TIME] = 1 |
||||||
|
exposure_df[SETTINGS_EXPOSURE_CHANNEL] = 2 |
||||||
|
|
||||||
|
result = _check_if_xdr_ready(exposure_df) |
||||||
|
|
||||||
|
assert result is None |
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(["run"], [[0], [1], [2]]) |
||||||
|
def test_check_if_xdr_ready_raises_error_missing_column(exposure_df, run): |
||||||
|
from sensospot_data.columns import ( |
||||||
|
SETTINGS_EXPOSURE_TIME, |
||||||
|
SETTINGS_EXPOSURE_CHANNEL, |
||||||
|
) |
||||||
|
from sensospot_data.dynamic_range import _check_if_xdr_ready |
||||||
|
|
||||||
|
columns = [SETTINGS_EXPOSURE_TIME, SETTINGS_EXPOSURE_CHANNEL, "X"] |
||||||
|
extra_col = columns[run] |
||||||
|
|
||||||
|
exposure_df[extra_col] = 1 |
||||||
|
|
||||||
|
with pytest.raises(ValueError): |
||||||
|
_check_if_xdr_ready(exposure_df) |
||||||
|
|
||||||
|
|
||||||
|
def test_check_if_xdr_ready_raises_error_mixed_channels(exposure_df): |
||||||
|
from sensospot_data.columns import ( |
||||||
|
META_DATA_EXPOSURE_ID, |
||||||
|
SETTINGS_EXPOSURE_TIME, |
||||||
|
SETTINGS_EXPOSURE_CHANNEL, |
||||||
|
) |
||||||
|
from sensospot_data.dynamic_range import _check_if_xdr_ready |
||||||
|
|
||||||
|
exposure_df[SETTINGS_EXPOSURE_TIME] = 1 |
||||||
|
exposure_df[SETTINGS_EXPOSURE_CHANNEL] = exposure_df[META_DATA_EXPOSURE_ID] |
||||||
|
|
||||||
|
with pytest.raises(ValueError): |
||||||
|
_check_if_xdr_ready(exposure_df) |
||||||
|
|
||||||
|
|
||||||
|
def test_check_if_xdr_ready_raises_error_non_numeric_time(exposure_df): |
||||||
|
from sensospot_data.columns import ( |
||||||
|
SETTINGS_EXPOSURE_TIME, |
||||||
|
SETTINGS_EXPOSURE_CHANNEL, |
||||||
|
) |
||||||
|
from sensospot_data.dynamic_range import _check_if_xdr_ready |
||||||
|
|
||||||
|
exposure_df[SETTINGS_EXPOSURE_TIME] = "X" |
||||||
|
exposure_df[SETTINGS_EXPOSURE_CHANNEL] = 2 |
||||||
|
|
||||||
|
with pytest.raises(ValueError): |
||||||
|
_check_if_xdr_ready(exposure_df) |
||||||
|
|
||||||
|
|
||||||
|
def test_check_if_xdr_ready_raises_error_on_nan(exposure_df): |
||||||
|
from sensospot_data.columns import ( |
||||||
|
SETTINGS_EXPOSURE_TIME, |
||||||
|
SETTINGS_EXPOSURE_CHANNEL, |
||||||
|
) |
||||||
|
from sensospot_data.dynamic_range import _check_if_xdr_ready |
||||||
|
|
||||||
|
exposure_df[SETTINGS_EXPOSURE_TIME] = numpy.nan |
||||||
|
exposure_df[SETTINGS_EXPOSURE_CHANNEL] = 2 |
||||||
|
|
||||||
|
with pytest.raises(ValueError): |
||||||
|
_check_if_xdr_ready(exposure_df) |
||||||
|
|
||||||
|
|
||||||
|
def test_check_overflow_limit_defaults(): |
||||||
|
from sensospot_data.columns import CALC_SPOT_OVERFLOW, RAW_DATA_SPOT_MEAN |
||||||
|
from sensospot_data.dynamic_range import _calc_overflow_info |
||||||
|
|
||||||
|
data_frame = pandas.DataFrame(data={RAW_DATA_SPOT_MEAN: [0.1, 0.5, 0.6]}) |
||||||
|
|
||||||
|
result = _calc_overflow_info(data_frame) |
||||||
|
|
||||||
|
assert list(result[CALC_SPOT_OVERFLOW]) == [False, False, True] |
||||||
|
|
||||||
|
|
||||||
|
def test_check_overflow_limit_custom_limit(): |
||||||
|
from sensospot_data.columns import CALC_SPOT_OVERFLOW |
||||||
|
from sensospot_data.dynamic_range import _calc_overflow_info |
||||||
|
|
||||||
|
data_frame = pandas.DataFrame(data={"X": [4, 2, 3, 4]}) |
||||||
|
|
||||||
|
result = _calc_overflow_info(data_frame, "X", 2) |
||||||
|
|
||||||
|
assert list(result[CALC_SPOT_OVERFLOW]) == [True, False, True, True] |
||||||
|
|
||||||
|
|
||||||
|
def test_reduce_overflow_multiple_times(normalization_data_frame): |
||||||
|
from sensospot_data.dynamic_range import ( |
||||||
|
PROBE_MULTI_INDEX, |
||||||
|
_reduce_overflow, |
||||||
|
_calc_overflow_info, |
||||||
|
) |
||||||
|
|
||||||
|
data_frame = _calc_overflow_info(normalization_data_frame, "Saturation", 1) |
||||||
|
result = _reduce_overflow(data_frame) |
||||||
|
|
||||||
|
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX) |
||||||
|
|
||||||
|
assert list(sorted_results["Value"]) == [ |
||||||
|
1, |
||||||
|
2, |
||||||
|
3, |
||||||
|
1, |
||||||
|
10, |
||||||
|
10, |
||||||
|
10, |
||||||
|
10, |
||||||
|
100, |
||||||
|
100, |
||||||
|
100, |
||||||
|
100, |
||||||
|
] |
||||||
|
|
||||||
|
|
||||||
|
def test_reduce_overflow_only_one_exposure_time(normalization_data_frame): |
||||||
|
from sensospot_data.dynamic_range import ( |
||||||
|
SETTINGS_EXPOSURE_TIME, |
||||||
|
_reduce_overflow, |
||||||
|
_calc_overflow_info, |
||||||
|
) |
||||||
|
|
||||||
|
normalization_data_frame[SETTINGS_EXPOSURE_TIME] = 1 |
||||||
|
|
||||||
|
data_frame = _calc_overflow_info(normalization_data_frame, "Saturation", 1) |
||||||
|
result = _reduce_overflow(data_frame) |
||||||
|
|
||||||
|
assert list(result["Value"]) == list(normalization_data_frame["Value"]) |
||||||
|
|
||||||
|
|
||||||
|
def test_blend(normalization_data_frame): |
||||||
|
from sensospot_data.dynamic_range import PROBE_MULTI_INDEX, blend |
||||||
|
|
||||||
|
result = blend(normalization_data_frame, "Saturation", 1) |
||||||
|
|
||||||
|
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX) |
||||||
|
|
||||||
|
assert list(sorted_results["Value"]) == [ |
||||||
|
1, |
||||||
|
2, |
||||||
|
3, |
||||||
|
1, |
||||||
|
10, |
||||||
|
10, |
||||||
|
10, |
||||||
|
10, |
||||||
|
100, |
||||||
|
100, |
||||||
|
100, |
||||||
|
100, |
||||||
|
] |
||||||
|
|
||||||
|
|
||||||
|
def test_blend_raises_error(normalization_data_frame): |
||||||
|
from sensospot_data.dynamic_range import SETTINGS_EXPOSURE_TIME, blend |
||||||
|
|
||||||
|
normalization_data_frame[SETTINGS_EXPOSURE_TIME] = "A" |
||||||
|
|
||||||
|
with pytest.raises(ValueError): |
||||||
|
blend(normalization_data_frame, "Saturation", 1) |
||||||
|
|
||||||
|
|
||||||
|
def test_normalize_values_no_param(normalization_data_frame): |
||||||
|
from sensospot_data.columns import RAW_DATA_NORMALIZATION_MAP |
||||||
|
from sensospot_data.dynamic_range import ( |
||||||
|
PROBE_MULTI_INDEX, |
||||||
|
blend, |
||||||
|
normalize_values, |
||||||
|
) |
||||||
|
|
||||||
|
reduced = blend(normalization_data_frame, "Saturation", 1) |
||||||
|
|
||||||
|
result = normalize_values(reduced) |
||||||
|
|
||||||
|
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX) |
||||||
|
expected_values = [1, 4, 15, 1, 10, 10, 10, 10, 100, 100, 100, 100] |
||||||
|
|
||||||
|
for normalized_col in RAW_DATA_NORMALIZATION_MAP.values(): |
||||||
|
assert list(sorted_results[normalized_col]) == expected_values |
||||||
|
|
||||||
|
|
||||||
|
def test_normalize_values_custom_param(normalization_data_frame): |
||||||
|
from sensospot_data.columns import RAW_DATA_NORMALIZATION_MAP |
||||||
|
from sensospot_data.dynamic_range import ( |
||||||
|
PROBE_MULTI_INDEX, |
||||||
|
blend, |
||||||
|
normalize_values, |
||||||
|
) |
||||||
|
|
||||||
|
reduced = blend(normalization_data_frame, "Saturation", 1) |
||||||
|
|
||||||
|
result = normalize_values(reduced, 100) |
||||||
|
|
||||||
|
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX) |
||||||
|
expected_values = [2, 8, 30, 2, 20, 20, 20, 20, 200, 200, 200, 200] |
||||||
|
|
||||||
|
for normalized_col in RAW_DATA_NORMALIZATION_MAP.values(): |
||||||
|
assert list(sorted_results[normalized_col]) == expected_values |
||||||
|
|
||||||
|
|
||||||
|
def test_create_xdr(normalization_data_frame): |
||||||
|
from sensospot_data.columns import RAW_DATA_NORMALIZATION_MAP |
||||||
|
from sensospot_data.dynamic_range import PROBE_MULTI_INDEX, create_xdr |
||||||
|
|
||||||
|
result = create_xdr(normalization_data_frame, 100, "Saturation", 1) |
||||||
|
|
||||||
|
sorted_results = result.sort_values(by=PROBE_MULTI_INDEX) |
||||||
|
expected_values = [2, 8, 30, 2, 20, 20, 20, 20, 200, 200, 200, 200] |
||||||
|
|
||||||
|
for normalized_col in RAW_DATA_NORMALIZATION_MAP.values(): |
||||||
|
assert list(sorted_results[normalized_col]) == expected_values |
@ -1,184 +0,0 @@ |
|||||||
from collections import namedtuple |
|
||||||
|
|
||||||
import pandas |
|
||||||
|
|
||||||
ExposureSetting = namedtuple("ExposureSetting", ["channel", "time"]) |
|
||||||
|
|
||||||
|
|
||||||
def test_check_overflow_limit_defaults(): |
|
||||||
from sensospot_data.normalisation import _check_overflow_limit |
|
||||||
|
|
||||||
data_frame = pandas.DataFrame(data={"Spot.Mean": [0.1, 0.5, 0.6]}) |
|
||||||
|
|
||||||
result = _check_overflow_limit(data_frame) |
|
||||||
|
|
||||||
assert list(result["Calc.Spot.Overflow"]) == [False, False, True] |
|
||||||
|
|
||||||
|
|
||||||
def test_check_overflow_limit_custom_limit(): |
|
||||||
from sensospot_data.normalisation import _check_overflow_limit |
|
||||||
|
|
||||||
data_frame = pandas.DataFrame(data={"Spot.Saturation": [4, 2, 3, 4]}) |
|
||||||
|
|
||||||
result = _check_overflow_limit(data_frame, "Spot.Saturation", 2) |
|
||||||
|
|
||||||
assert list(result["Calc.Spot.Overflow"]) == [True, False, True, True] |
|
||||||
|
|
||||||
|
|
||||||
def test_reduce_overflow_in_channel(normalization_data_frame): |
|
||||||
from sensospot_data.normalisation import ( |
|
||||||
_check_overflow_limit, |
|
||||||
_reduce_overflow_in_channel, |
|
||||||
) |
|
||||||
|
|
||||||
data_frame = _check_overflow_limit( |
|
||||||
normalization_data_frame, "Saturation", 1 |
|
||||||
) |
|
||||||
result = _reduce_overflow_in_channel(data_frame) |
|
||||||
|
|
||||||
sorted_results = result.sort_values( |
|
||||||
by=["Well.Row", "Well.Column", "Pos.Id"] |
|
||||||
) |
|
||||||
|
|
||||||
assert list(sorted_results["Value"]) == [ |
|
||||||
1, |
|
||||||
2, |
|
||||||
3, |
|
||||||
1, |
|
||||||
10, |
|
||||||
10, |
|
||||||
10, |
|
||||||
10, |
|
||||||
100, |
|
||||||
100, |
|
||||||
100, |
|
||||||
100, |
|
||||||
] |
|
||||||
|
|
||||||
|
|
||||||
def test_reduce_overflow_in_channel_shortcut(normalization_data_frame): |
|
||||||
from sensospot_data.normalisation import ( |
|
||||||
_check_overflow_limit, |
|
||||||
_reduce_overflow_in_channel, |
|
||||||
) |
|
||||||
|
|
||||||
normalization_data_frame["Exposure.Time"] = 1 |
|
||||||
|
|
||||||
data_frame = _check_overflow_limit( |
|
||||||
normalization_data_frame, "Saturation", 1 |
|
||||||
) |
|
||||||
result = _reduce_overflow_in_channel(data_frame) |
|
||||||
|
|
||||||
assert result is data_frame |
|
||||||
|
|
||||||
|
|
||||||
def test_reduce_overflow(normalization_data_frame): |
|
||||||
from sensospot_data.normalisation import reduce_overflow |
|
||||||
|
|
||||||
result = reduce_overflow(normalization_data_frame, "Saturation", 1) |
|
||||||
|
|
||||||
assert "Cy5" in result |
|
||||||
|
|
||||||
sorted_results = result["Cy5"].sort_values( |
|
||||||
by=["Well.Row", "Well.Column", "Pos.Id"] |
|
||||||
) |
|
||||||
|
|
||||||
assert list(sorted_results["Value"]) == [ |
|
||||||
1, |
|
||||||
2, |
|
||||||
3, |
|
||||||
1, |
|
||||||
10, |
|
||||||
10, |
|
||||||
10, |
|
||||||
10, |
|
||||||
100, |
|
||||||
100, |
|
||||||
100, |
|
||||||
100, |
|
||||||
] |
|
||||||
|
|
||||||
|
|
||||||
def test_infer_normalization_map(normalization_data_frame): |
|
||||||
from sensospot_data.utils import split_data_frame |
|
||||||
from sensospot_data.normalisation import _infer_normalization_map |
|
||||||
|
|
||||||
normalization_data_frame.loc[5, "Exposure.Channel"] = "Cy3" |
|
||||||
split_frames = split_data_frame( |
|
||||||
normalization_data_frame, "Exposure.Channel" |
|
||||||
) |
|
||||||
|
|
||||||
result = _infer_normalization_map(split_frames) |
|
||||||
|
|
||||||
assert result == {"Cy3": 25, "Cy5": 50} |
|
||||||
|
|
||||||
|
|
||||||
def test_normalize_channel(normalization_data_frame): |
|
||||||
from sensospot_data.columns import RAW_DATA_NORMALIZATION_MAP |
|
||||||
from sensospot_data.normalisation import reduce_overflow, normalize_channel |
|
||||||
|
|
||||||
reduced = reduce_overflow(normalization_data_frame, "Saturation", 1) |
|
||||||
result = normalize_channel(reduced["Cy5"], 50) |
|
||||||
|
|
||||||
sorted_results = result.sort_values( |
|
||||||
by=["Well.Row", "Well.Column", "Pos.Id"] |
|
||||||
) |
|
||||||
expected_values = [2, 8, 30, 2, 20, 20, 20, 20, 200, 200, 200, 200] |
|
||||||
|
|
||||||
for normalized_col in RAW_DATA_NORMALIZATION_MAP.values(): |
|
||||||
list(sorted_results[normalized_col]) == expected_values |
|
||||||
|
|
||||||
|
|
||||||
def test_normalize_exposure_time(normalization_data_frame): |
|
||||||
from sensospot_data.normalisation import ( |
|
||||||
reduce_overflow, |
|
||||||
normalize_exposure_time, |
|
||||||
) |
|
||||||
|
|
||||||
reduced = reduce_overflow(normalization_data_frame, "Saturation", 1) |
|
||||||
result = normalize_exposure_time(reduced) |
|
||||||
|
|
||||||
assert "Cy5" in result |
|
||||||
|
|
||||||
sorted_results = result["Cy5"].sort_values( |
|
||||||
by=["Well.Row", "Well.Column", "Pos.Id"] |
|
||||||
) |
|
||||||
expected_values = [1, 4, 15, 1, 10, 10, 10, 10, 100, 100, 100, 100] |
|
||||||
|
|
||||||
assert list(sorted_results["Calc.Normalized.Spot.Mean"]) == expected_values |
|
||||||
|
|
||||||
|
|
||||||
def test_normalize_exposure_time_infered_map(normalization_data_frame): |
|
||||||
from sensospot_data.normalisation import ( |
|
||||||
reduce_overflow, |
|
||||||
normalize_exposure_time, |
|
||||||
) |
|
||||||
|
|
||||||
reduced = reduce_overflow(normalization_data_frame, "Saturation", 1) |
|
||||||
result = normalize_exposure_time(reduced) |
|
||||||
|
|
||||||
assert "Cy5" in result |
|
||||||
|
|
||||||
sorted_results = result["Cy5"].sort_values( |
|
||||||
by=["Well.Row", "Well.Column", "Pos.Id"] |
|
||||||
) |
|
||||||
expected_values = [1, 4, 15, 1, 10, 10, 10, 10, 100, 100, 100, 100] |
|
||||||
|
|
||||||
assert list(sorted_results["Calc.Normalized.Spot.Mean"]) == expected_values |
|
||||||
|
|
||||||
|
|
||||||
def test_normalize_measurement(data_frame_with_params): |
|
||||||
from sensospot_data.normalisation import split_channels |
|
||||||
|
|
||||||
exposure_map = { |
|
||||||
1: ExposureSetting("Cy3", 100), |
|
||||||
2: ExposureSetting("Cy5", 15), |
|
||||||
3: ExposureSetting("Cy5", 150), |
|
||||||
} |
|
||||||
|
|
||||||
result = split_channels(data_frame_with_params, exposure_map) |
|
||||||
cy3_df, cy5_df = result["Cy3"], result["Cy5"] |
|
||||||
|
|
||||||
assert set(result.keys()) == {"Cy3", "Cy5"} |
|
||||||
assert cy3_df["Settings.Normalized.Exposure.Time"].unique() == 100 |
|
||||||
assert cy5_df["Settings.Normalized.Exposure.Time"].unique() == 150 |
|
Loading…
Reference in new issue